scholarly journals Severity Classification of Conjunctival Hyperaemia by Deep Neural Network Ensembles

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Hiroki Masumoto ◽  
Hitoshi Tabuchi ◽  
Tsuyoshi Yoneda ◽  
Shunsuke Nakakura ◽  
Hideharu Ohsugi ◽  
...  

Conjunctival hyperaemia is a common clinical ophthalmological finding and can be a symptom of various ocular disorders. Although several severity classification criteria have been proposed, none include objective severity criteria. Neural networks and deep learning have been utilised in ophthalmology, but not for the purpose of classifying the severity of conjunctival hyperaemia objectively. To develop a conjunctival hyperaemia grading software, we used 3700 images as the training data and 923 images as the validation test data. We trained the nine neural network models and validated the performance of these networks. We finally chose the best combination of these networks. The DenseNet201 model was the best individual model. The combination of the DenseNet201, DenseNet121, VGG19, and ResNet50 were the best model. The correlation between the multimodel responses, and the vessel-area occupied was 0.737 (p<0.01). This system could be as accurate and comprehensive as specialists but would be significantly faster and consistent with objective values.

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 45993-45999
Author(s):  
Ung Yang ◽  
Seungwon Oh ◽  
Seung Gon Wi ◽  
Bok-Rye Lee ◽  
Sang-Hyun Lee ◽  
...  

2000 ◽  
Author(s):  
Arturo Pacheco-Vega ◽  
Mihir Sen ◽  
Rodney L. McClain

Abstract In the current study we consider the problem of accuracy in heat rate estimations from artificial neural network models of heat exchangers used for refrigeration applications. The network configuration is of the feedforward type with a sigmoid activation function and a backpropagation algorithm. Limited experimental measurements from a manufacturer are used to show the capability of the neural network technique in modeling the heat transfer in these systems. Results from this exercise show that a well-trained network correlates the data with errors of the same order as the uncertainty of the measurements. It is also shown that the number and distribution of the training data are linked to the performance of the network when estimating the heat rates under different operating conditions, and that networks trained from few tests may give large errors. A methodology based on the cross-validation technique is presented to find regions where not enough data are available to construct a reliable neural network. The results from three tests show that the proposed methodology gives an upper bound of the estimated error in the heat rates.


2019 ◽  
Vol 9 (13) ◽  
pp. 2683 ◽  
Author(s):  
Sang-Ki Ko ◽  
Chang Jo Kim ◽  
Hyedong Jung ◽  
Choongsang Cho

We propose a sign language translation system based on human keypoint estimation. It is well-known that many problems in the field of computer vision require a massive dataset to train deep neural network models. The situation is even worse when it comes to the sign language translation problem as it is far more difficult to collect high-quality training data. In this paper, we introduce the KETI (Korea Electronics Technology Institute) sign language dataset, which consists of 14,672 videos of high resolution and quality. Considering the fact that each country has a different and unique sign language, the KETI sign language dataset can be the starting point for further research on the Korean sign language translation. Using the KETI sign language dataset, we develop a neural network model for translating sign videos into natural language sentences by utilizing the human keypoints extracted from the face, hands, and body parts. The obtained human keypoint vector is normalized by the mean and standard deviation of the keypoints and used as input to our translation model based on the sequence-to-sequence architecture. As a result, we show that our approach is robust even when the size of the training data is not sufficient. Our translation model achieved 93.28% (55.28%, respectively) translation accuracy on the validation set (test set, respectively) for 105 sentences that can be used in emergency situations. We compared several types of our neural sign translation models based on different attention mechanisms in terms of classical metrics for measuring the translation performance.


2020 ◽  
Vol 43 (12) ◽  
Author(s):  
Sriram K. Vidyarthi ◽  
Samrendra K. Singh ◽  
Rakhee Tiwari ◽  
Hong‐Wei Xiao ◽  
Rewa Rai

2018 ◽  
Vol 339 ◽  
pp. 615-624 ◽  
Author(s):  
Shaohua Chen ◽  
Laurent A. Baumes ◽  
Aytekin Gel ◽  
Manogna Adepu ◽  
Heather Emady ◽  
...  

2006 ◽  
Vol 3 (1) ◽  
pp. 201-227 ◽  
Author(s):  
N. Lauzon ◽  
F. Anctil ◽  
C. W. Baxter

Abstract. This work addresses the issue of better considering the heterogeneity of precipitation fields within lumped rainfall-runoff models where only areal mean precipitation is usually used as an input. A method using a Kohonen neural network is proposed for the classification of precipitation fields. The evaluation and improvement of the performance of a lumped rainfall-runoff model for one-day ahead predictions is then established based on this classification. Multilayer perceptron neural networks are employed as lumped rainfall-runoff models. The Bas-en-Basset watershed in France, which is equipped with 23 rain gauges with data for a 21-year period, is employed as the application case. The results demonstrate the relevance of the proposed classification method, which produces groups of precipitation fields that are in agreement with the global climatological features affecting the region, as well as with the topographic constraints of the watershed (i.e., orography). The strengths and weaknesses of the rainfall-runoff models are highlighted by the analysis of their performance vis-à-vis the classification of precipitation fields. The results also show the capability of multilayer perceptron neural networks to account for the heterogeneity of precipitation, even when built as lumped rainfall-runoff models.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012005
Author(s):  
C R Karthik ◽  
Raghunandan ◽  
B Ashwath Rao ◽  
N V Subba Reddy

Abstract A time series is an order of observations engaged serially in time. The prime objective of time series analysis is to build mathematical models that provide reasonable descriptions from training data. The goal of time series analysis is to forecast the forthcoming values of a series based on the history of the same series. Forecasting of stock markets is a thought-provoking problem because of the number of possible variables as well as volatile noise that may contribute to the prices of the stock. However, the capability to analyze stock market leanings could be vital to investors, traders and researchers, hence has been of continued interest. Plentiful arithmetical and machine learning practices have been discovered for stock analysis and forecasting/prediction. In this paper, we perform a comparative study on two very capable artificial neural network models i) Deep Neural Network (DNN) and ii) Long Short-Term Memory (LSTM) a type of recurrent neural network (RNN) in predicting the daily variance of NIFTYIT in BSE (Bombay Stock Exchange) and NSE (National Stock Exchange) markets. DNN was chosen due to its capability to handle complex data with substantial performance and better generalization without being saturated. LSTM model was decided, as it contains intermediary memory which can hold the historic patterns and occurrence of the next prediction depends on the values that preceded it. With both networks, measures were taken to reduce overfitting. Daily predictions of the NIFTYIT index were made to test the generalizability of the models. Both networks performed well at making daily predictions, and both generalized admirably to make daily predictions of the NiftyIT data. The LSTM-RNN outpaced the DNN in terms of forecasting and thus, grips more potential for making longer-term estimates.


Sign in / Sign up

Export Citation Format

Share Document