scholarly journals Large Eddy Simulation of a Turbulent Spray Jet Flame Using Filtered Tabulated Chemistry

2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Adrien Chatelier ◽  
Benoît Fiorina ◽  
Vincent Moureau ◽  
Nicolas Bertier

This work presents Large Eddy Simulations of the unconfined CORIA Rouen Spray Burner, fed with liquid n-heptane and air. Turbulent combustion modeling is based on the Filtered TAbulated Chemistry model for LES (F-TACLES) formalism, designed to capture the propagation speed of turbulent stratified flames. Initially dedicated to gaseous combustion, the filtered flamelet model is challenged for the first time in a turbulent spray flame configuration. Two meshes are employed. The finest grid, where both flame thickness and wrinkling are resolved, aims to challenge the chemistry tabulation procedure. At the opposite the coarse mesh does not allow full resolution of the flame thickness and exhibits significant unresolved contributions of subgrid scale flame wrinkling. Both LES solutions are extensively compared against experimental data. For both nonreacting and reacting conditions, the flow and spray aerodynamical properties are well captured by the two simulations. More interesting, the LES predicts accurately the flame lift-off height for both fine and coarse grid conditions. It confirms that the modeling methodology is able to capture the filtered turbulent flame propagation speed in a two-phase flow environment and within grid conditions representative of practical applications. Differences, observed for the droplet temperature, seem related to the evaporation model assumptions.

2019 ◽  
Author(s):  
Adrien Chatelier ◽  
Vincent R. Moureau ◽  
Nicolas Bertier ◽  
Benoit Fiorina

Author(s):  
Kenji Yamamoto ◽  
Daisuke Kina ◽  
Teruyuki Okazaki ◽  
Masayuki Taniguchi ◽  
Hirofumi Okazaki ◽  
...  

LES (large eddy simulation) is applied to combustion simulations of two large scale pulverized coal-fired furnaces. One application is a boiler furnace with the coal feed rate of 3,000 kg/h. The results of LES show good agreement in not only distributions of temperature, NO concentration, and CO concentration on the vertical center line but also NO and CO emissions and UBC (unburned carbon in ash). The calculation error of NO emission is 10%. The other application is a horizontal furnace with a low NOx burner with the coal feed rate of 560 kg/h. LES predicts temperatures and oxygen concentrations accurately; but the standard k-ε model does not. The flame width calculated by the standard k-ε model is narrower than that by LES. These calculated results indicate that the drawback of the standard k-ε model is its low calculation accuracy for the coal jet flame decay and lift-off height.


2019 ◽  
Vol 33 (5) ◽  
pp. 181-201 ◽  
Author(s):  
David Jesch ◽  
Alija Bevrnja ◽  
Francesca di Mare ◽  
Johannes Janicka ◽  
Amsini Sadiki

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Rohit Kulkarni ◽  
Wolfgang Polifke

The potential of a progress variable formulation for predicting autoignition and subsequent kernel development in a nonpremixed jet flame is explored in the LES (Large Eddy Simulation) context. The chemistry is tabulated as a function of mixture fraction and a composite progress variable, which is defined as a combination of an intermediate and a product species. Transport equations are solved for mixture fraction and progress variable. The filtered mean source term for the progress variable is closed using a probability density function of presumed shape for the mixture fraction. Subgrid fluctuations of the progress variable conditioned on the mixture fraction are neglected. A diluted hydrogen jet issuing into a turbulent coflow of preheated air is chosen as a test case. The model predicts ignition lengths and subsequent kernel growth in good agreement with experiment without any adjustment of model parameters. The autoignition length predicted by the model depends noticeably on the chemical mechanism which the tabulated chemistry is based on. Compared to models using detailed chemistry, significant reduction in computational costs can be realized with the progress variable formulation.


Author(s):  
Aleksandra Rezchikova ◽  
Cédric Mehl ◽  
Scott Drennan ◽  
Olivier Colin

Abstract The accurate simulation of two-phase flow combustion is crucial for the design of aeronautical combustion chambers. In order to gain insight into complex interactions between a flame, a flow, and a liquid phase, the present work addresses the combustion modeling for the Large Eddy Simulation (LES) of a turbulent spray jet flame. The Eulerian-Lagrangian framework is selected to represent the gaseous and liquid phases, respectively. Chemical processes are described by a reduced mechanism, and turbulent combustion is modeled by the Thickened Flame Model (TFM) coupled to the Adaptive Mesh Refinement (AMR). The TFM-AMR extension on the dispersed phase is successfully validated on a laminar spray flame configuration. Then, the modeling approach is evaluated on the academic turbulent spray burner, providing a good agreement with the experimental data.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Aleksandra Rezchikova ◽  
Cédric Mehl ◽  
Scott Drennan ◽  
Olivier Colin

Abstract The accurate simulation of two-phase flow combustion is crucial for the design of aeronautical combustion chambers. In order to gain insight into complex interactions between a flame, a flow, and a liquid phase, the present work addresses the combustion modeling for the large eddy simulation (LES) of a turbulent spray jet flame. The Eulerian–Lagrangian framework is selected to represent the gaseous and liquid phases, respectively. Chemical processes are described by a reduced mechanism, and turbulent combustion is modeled by the thickened flame model (TFM) coupled to the adaptive mesh refinement (AMR). The TFM-AMR extension on the dispersed phase is successfully validated on a laminar spray flame configuration. Then, the modeling approach is evaluated on the academic turbulent spray burner, providing a good agreement with the experimental data.


Author(s):  
Rohit Kulkarni ◽  
Birute Bunkute ◽  
Fernando Biagioli ◽  
Michael Duesing ◽  
Wolfgang Polifke

Large Eddy Simulations (LES) of natural gas ignition and combustion in turbulent flows are performed using a novel combustion model based on a composite progress variable, a tabulated chemistry ansatz and the stochastic-fields turbulence-chemistry interaction model. It is a significant advantage of this approach that it can be applied to industrial configurations with multi-stream mixing at relatively low computational cost and modeling complexity. The computational cost is independent of the chemical mechanism or the type of fuel, but increases linearly with the number of streams. The model is validated successfully against the Cabra methane flame and Delft Jet in Hot Coflow (DJFC) flame. Both cases constitute fuel jets in a vitiated coflow. The DJFC flame coflow has a non-uniform mixture of air and hot gases. The model considers this non-uniformity by an additional mixture fraction dimension, emulating a ternary mixing case. The model not only predicts flame location, but also the temperature distribution quantitatively. The LES combustion model is further extended to consider four stream mixing. It has been successfully validated for ALSTOM’s reheat combustor at atmospheric conditions. Compared to the past steady-state RANS (Reynolds Averaged Navier-Stokes) simulations [1], the LES simulations provide an even better understanding of the turbulent flame characteristics, which helps in the burner optimization.


Sign in / Sign up

Export Citation Format

Share Document