scholarly journals Tensile Fracture Behavior of Corroded Pipeline: Part 1—Experimental Characterization

2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Yuchao Yang ◽  
Feng Liu ◽  
Feng Xi

The understanding of the axial tensile behavior of environmentally corroded pipelines is of great significance for the design, maintenance, and evaluation of such structures. This article presents some experimental data recorded from 210 tensile tests on pipe, which were corroded from grade of 10% to 70% by electrochemical accelerated corrosion method. The fracture modes show that, for the uncorroded pipe, the fracture frequently occurs in the middle of the specimen and then propagates perpendicular to the loading direction. However, for the corroded pipe, the crack’s position, evolution angle, and path have strong randomness. The comparative analysis based on the macroscopic stress-strain relationship shows that the rapid decrease of the yield stress, ultimate strength, and strain at the fracture for corroded pipe are correlated with the fracture patterns; i.e., the fracture patterns of pipe are changed from uniform to scattered with the continuous increase of the corrosion rate. The reduction factor based on experimental data is recommended for the consideration of the corrosion effect on the tensile strength of the steel pipe. Discussion on the tensile capacity during the service time is also presented.

2020 ◽  
Vol 20 (05) ◽  
pp. 2050027
Author(s):  
VERA GRAMIGNA ◽  
GIONATA FRAGOMENI ◽  
CHIARA GIULIA FONTANELLA ◽  
CESARE STEFANINI ◽  
EMANUELE LUIGI CARNIEL

Nowadays, the investigation of aortic wall biomechanics is a fundamental tool in clinical research and vascular prosthesis design. This study aims at analyzing the biomechanical behavior of aortic tissues using a coupled experimental and computational approach. Considering the typical fiber-reinforced configuration of aortic tissues, uni-axial tensile tests along six different loading directions were performed on specimens from pig aorta. Starting from the obtained experimental data, a suitable constitutive framework was defined and a methodology for the identification of the constitutive parameters was developed using the inverse analysis of mechanical tests. Transversal stretch versus loading stretch and nominal stress versus loading stretch curves were evaluated, showing the anisotropic and nonlinear mechanical behavior determined by tissue conformation with fibers distributed along preferential directions. In detail, experimental data showed different mechanical responses between longitudinal and circumferential directions, with a greater tissue stiffness along the longitudinal one. The reliability of the developed constitutive framework was evaluated by the comparison between experimental data and model results. The mentioned analysis can be considered as a useful tool for the development of reliable computational models, which allow a better understanding of the pathophysiology of cardiovascular diseases and can be applied for a proper planning of surgical procedures.


Author(s):  
K A Kazim ◽  
B Maiti ◽  
P Chand

Centrifugal pumps are being used increasingly for transportation of slurries through pipelines. To design a slurry handling system it is essential to have a knowledge of the effects of suspended solids on the pump performance. A new correlation to predict the head reduction factor for centrifugal pumps handling solids has been developed. This correlation takes into account the individual effect of particle size, particle size distribution, specific gravity and concentration of solids on the centrifugal pump performance characteristics. The range of validity of the correlation has been verified by experiment and by using experimental data available from the literature. The present correlation shows better agreement with the experimental data than existing correlations.


1983 ◽  
Vol 105 (3) ◽  
pp. 268-274 ◽  
Author(s):  
C. J. Chuong ◽  
Y. C. Fung

A three-dimensional stress-strain relationship derived from a strain energy function of the exponential form is proposed for the arterial wall. The material constants are identified from experimental data on rabbit arteries subjected to inflation and longitudinal stretch in the physiological range. The objectives are: 1) to show that such a procedure is feasible and practical, and 2) to call attention to the very large variations in stresses and strains across the vessel wall under the assumptions that the tissue is incompressible and stress-free when all external load is removed.


2005 ◽  
Vol 488-489 ◽  
pp. 453-456 ◽  
Author(s):  
Shi Hong Zhang ◽  
Yong Chao Xu ◽  
G. Palumbo ◽  
S. Pinto ◽  
Luigi Tricarico ◽  
...  

Comparing the formability with each other, extrusion and various rolling experiments were carried out to make fine-grained AZ31 Mg sheets, and uni-axial tensile tests were carried out at different strain rates and temperatures to investigate the effect of different variables. A warm deep drawing tool setup with heating elements, which were distributed under the die surface and inside the blank holder, was designed and manufactured, and deep drawing was performed. Extruded Mg alloy AZ31 sheets exhibit the best deep drawing ability when working in the temperature range 250-350°C. Extruded and rolled sheets of 0.8 mm thick were also deep drawn in the lower temperature range 105-170°C,showing good formability and reaching a Limit Drawing Ratio up to 2.6 at 170°C for rolled sheets. At last, a sheet cup 0.4 mm thick was deep drawn successfully at 170 °C.


1953 ◽  
Vol 20 (1) ◽  
pp. 122-130
Author(s):  
Julius Miklowitz

Abstract In some tensile tests with brittle materials, it was noted that fractures were produced at two different cross sections of the specimen when the rupture load was reached. The phenomenon of the second fracture prompted the present investigation. It is believed that the second fracture is caused by the destructive action of the elastic strain waves created during the first of the two fractures. The analytical and experimental work carried out was focused on describing the character of these waves. Consideration of the mechanics involved reduces the problem to that of a vibrating cantilever beam with time-dependent boundary conditions. Two types of waves are shown to exist. The first is a longitudinal unloading wave (compression). The other is a group of flexural strain waves caused by the moment that develops at the initial fracture section. The methods of operational mathematics and the electric-analog computer have been employed in the analytical study.


2013 ◽  
Vol 690-693 ◽  
pp. 211-217
Author(s):  
Jin Gui Qin ◽  
Fang Yun Lu ◽  
Yu Liang Lin ◽  
Xue Jun Wen

Results of uni-axial tensile loading of three automotive steels at different strain rates (0.0011–3200s-1) are reported here. Quasi-static tensile tests were performed under the strain rate of 1.1×10-3 s-1 using an electromechanical universal testing machine, whereas dynamic tests were carried out under the strain rate in the range of 1100 to 3200 s-1 using a Split Hopkinson Tensile Bar apparatus. Based on the experimental results, the material parameters of widely used Johnson–Cook model which described the strain rate and temperature-dependent of mechanical behaviour were determined. The experiments show that strain-rate hardening is superior to thermal softening: yield stresses, tensile strength, deformation, and energy dissipation increase with the strain rate from quasi-static tests to dynamic tests. The Johnson–Cook model can describe the behaviour of these steels and provides the opportunity to study the material and structural response.


2014 ◽  
Vol 936 ◽  
pp. 1163-1167
Author(s):  
Wen Jun He ◽  
Guang Hui Min ◽  
Oleg Tolochko

Microstructure and mechanical properties of Ti51.5Ni25Cu23.5 ribbon fabricated by melt spinning were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and tensile tests. Some B19 martensite crystalline with (011) compound twin was embedded in the mainly amorphous ribbon, while the ribbon annealed at 450°C for 1 h is at fully martensitic state. Annealing process alter the preferential orientation from (022)-B19 to (111)-B19. Tensile fracture stresses of as-spun ribbon and the annealed ribbon are 1257 MPa and 250 MPa, respectively. The tensile fracture morphology of as-spun ribbon shows typical vein fringe while that of the annealed ribbon reveals fine but depth-inhomogeneous dimples. After tensile deformation, the annealed ribbon exhibits typical martensitic detwinning behavior accompanying with the strain contrast.


2018 ◽  
Vol 37 (9-10) ◽  
pp. 873-888 ◽  
Author(s):  
Nitin Kotkunde ◽  
Hansoge Nitin Krishnamurthy ◽  
Swadesh Kumar Singh ◽  
Gangadhar Jella

AbstractA thorough understanding of hot deformation behavior plays a vital role in determining process parameters of hot working processes. Firstly, uniaxial tensile tests have been performed in the temperature ranges of 150 °C–600 °C and strain rate ranges of 0.0001–0.01s−1 for analyzing the deformation behavior of ASS 304 and ASS 316. The phenomenological-based constitutive models namely modified Fields–Backofen (m-FB) and Khan–Huang–Liang (KHL) have been developed. The prediction capability of these models has been verified with experimental data using various statistical measures. Analysis of statistical measures revealed KHL model has good agreement with experimental flow stress data. Through the flow stresses behavior, the processing maps are established and analyzed according to the dynamic materials model (DMM). In the processing map, the variation of the efficiency of the power dissipation is plotted as a function of temperature and strain rate. The processing maps results have been validated with experimental data.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 965 ◽  
Author(s):  
Angela Moreno Bazán ◽  
María de las Nieves González ◽  
Marcos G. Alberti ◽  
Jaime C. Gálvez

In this work 144 reinforcing bars of high-ductility steel named B500SD were subjected to an accelerated corrosion treatment and then tested under tension at different loading speeds in order to assess the effect of corrosion on the ductility properties of the rebars. Results showed that the bars with a corrosion level as low as the one reducing the steel mass by 1% gave rise to a significant degradation on the ductility properties when a high loading speed was applied in tensile tests. In that case, the equivalent steel concept is useful to reduce the destabilising effect. Thus, the research significance lies in the assessment of the influence of the loading speed at which the tensile test is performed for the reinforcement bars that largely depends of the ductility criteria used.


2020 ◽  
Vol 184 ◽  
pp. 01004
Author(s):  
L Jayahari ◽  
K Nagachary ◽  
Chandra Ch Sharath ◽  
SM Hussaini

There is an increase in demand for new alloys in aerospace, power generation and nuclear industries. Nickel Based super alloys are known for having distinctive properties which are best suitable for these industries. In this study Nickel based super alloy Inconel 718, is used. Over the many years of intense research and development, these alloys have seen considerable evolution in their properties and efficiency. Behaviour of materials and its forming characteristics can be precisely analysed by determining anisotropic behaviour and mechanical properties. In the present study, tried to analyse the mechanical properties of Inconel 718 like yield strength (Ys), ultimate tensile strength (UTS), strain hardening exponent (n) and strain hardening coefficient (k). Uni-axial tensile tests were conducted on specimens with various parameters such as orientations, temperature and Strain rate. Anisotropy of Inconel 718 alloy was measured based on measurable parameters. The normal anisotropy parameter (f) and planer anisotropy (Δr) were measured and observed that the anisotropy parametres are incresed with the decrease in temperature.


Sign in / Sign up

Export Citation Format

Share Document