scholarly journals Effects of Factors That Influence Out-of-Plane Lateral-Torsional Buckling on Freestanding Circular Arches

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Emmanuel-Peters Teke Tebo ◽  
Leonard Masu ◽  
Patrick Nziu

This paper presents the effects of the several factors that influence lateral-torsional buckling on freestanding circular arches. The studied factors that attribute to the effects of lateral-torsional buckling include cross section type, included angle, slender ratio, imperfection, loading, and boundary conditions. From the reviewed studies, the misrepresentation of these factors to a certain extent may yield inaccurate results. Several studies and design codes have proposed different solutions to account for these factors in designs against lateral-torsional buckling for some structural elements. However, there were no studies reported on the out-of-plane lateral-torsional buckling of fixed circular arches made of structural aluminum channel sections subjected to central concentrated load. Therefore, there is a need for further research on the lateral-torsional buckling real behavior of fixed circular arches of structural aluminum channels.

2017 ◽  
Vol 190 ◽  
pp. 106-110 ◽  
Author(s):  
Miroslav Bajer ◽  
Jan Barnat ◽  
Jiri Pijak

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yingchun Liu ◽  
Zhaoming Hang ◽  
Wenfu Zhang ◽  
Keshan Chen ◽  
Jing Ji

Concrete-filled tubular flange girders have been used in bridges, and torsional bracings are widely used in them to increase the lateral-torsional buckling strength. This article proposes an analytical solution for the lateral-torsional buckling (LTB) of concrete-filled tubular flange steel girders with torsional bracing under a concentrated load. The modal trial functions of lateral displacement and the torsional angle are expressed by the first six terms of the trigonometric function. By introducing dimensionless parameters, the variational solution of energy for the buckling equation of the LTB of the girders is obtained, and the formula for the dimensionless critical moment of its LTB is derived using 1stOpt based on 32,550 data sets. Compared with the finite element method, the proposed critical formula is highly accurate and can be applied to engineering design. Finally, parametric studies were conducted on the effects of the stiffness of torsional bracing, the span of the girder, and the flange steel ratio.


Sign in / Sign up

Export Citation Format

Share Document