The Solvability of Fractional Elliptic Equation with the Hardy Potential
Keyword(s):
In this paper, we study the existence and nonexistence of solutions to fractional elliptic equations with the Hardy potential −Δsu−λu/x2s=ur−1+δgu,in Ω,ux>0,in Ω,ux=0,in ℝN∖Ω, where Ω⊂ℝN is a bounded Lipschitz domain with 0∈Ω, −Δs is a fractional Laplace operator, s∈0,1, N>2s, δ is a positive number, 2<r<rλ,s≡N+2s−2αλ/N−2s−2αλ+1, αλ∈0,N−2s/2 is a parameter depending on λ, 0<λ<ΛN,s, and ΛN,s=22sΓ2N+2s/4/Γ2N−2s/4 is the sharp constant of the Hardy–Sobolev inequality.
2017 ◽
Vol 456
(1)
◽
pp. 274-292
Keyword(s):
2014 ◽
Vol 16
(04)
◽
pp. 1350046
◽
1984 ◽
Vol 282
(1)
◽
pp. 335-335
2011 ◽
Vol 13
(04)
◽
pp. 607-642
◽
1997 ◽
Vol 73
(1)
◽
pp. 203-223
◽
2020 ◽
Vol 26
◽
pp. 42
◽
1984 ◽
Vol 282
(1)
◽
pp. 335
◽
2005 ◽
Vol 07
(06)
◽
pp. 867-904
◽