scholarly journals Visible Light-Driven Mn-MoS2/rGO Composite Photocatalysts for the Photocatalytic Degradation of Rhodamine B

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Thi Thuy Trang Phan ◽  
Thanh Tam Truong ◽  
Ha Tran Huu ◽  
Le Tuan Nguyen ◽  
Van Thang Nguyen ◽  
...  

The n%Mn-MoS2/rGO (labeled as n%MMS/rGO, where n% = Mn/(Mn + Mo) in mol) composites were successfully prepared by a facile hydrothermal method from the Mn-MoS2 (MMS) and rGO precursors, in which the MMS was obtained by a facile one-step calcination of (NH4)6Mo7O24·4H2O, (NH2)2CS, and Mn(CH3COO)2·4H2O as precursors in N2 gas at 650°C. The samples were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron paramagnetic resonance spectroscopy (EPR), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), and X-ray photoelectron spectroscopy (XPS), which indicates the composites containing nanosheets of Mn-MoS2 and rGO components. The photocatalytic activities of the n%MMS/rGO composite photocatalysts were evaluated through the photodegradation of rhodamine B (RhB) under the visible light irradiation. The enhancement in the photocatalytic performance of the achieved composites was attributed to the synergic effect of Mn doping and rGO matrix. The investigation of photocatalytic mechanism was also conducted.

Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 695 ◽  
Author(s):  
Ramesh P. Sivasankaran ◽  
Nils Rockstroh ◽  
Carsten R. Kreyenschulte ◽  
Stephan Bartling ◽  
Henrik Lund ◽  
...  

MoS2/C3N4 (MS-CN) composite photocatalysts have been synthesized by three different methods, i.e., in situ-photodeposition, sonochemical, and thermal decomposition. The crystal structure, optical properties, chemical composition, microstructure, and electron transfer properties were investigated by X-ray diffraction, UV-vis diffuse reflectance spectroyscopy, X-ray photoelectron spectroscopy, electron microscopy, photoluminescence, and in situ electron paramagnetic resonance spectroscopy. During photodeposition, the 2H MoS2 phase was formed upon reduction of [MoS4]2− by photogenerated conduction band electrons and then deposited on the surface of CN. A thin crystalline layer of 2H MoS2 formed an intimate interfacial contact with CN that favors charge separation and enhances the photocatalytic activity. The 2H MS-CN phase showed the highest photocatalytic H2 evolution rate (2342 μmol h−1 g−1, 25 mg catalyst/reaction) under UV-vis light irradiation in the presence of lactic acid as sacrificial reagent and Pt as cocatalyst.


2020 ◽  
pp. 089270572094421
Author(s):  
Guo Liu ◽  
Ting-Ting Li ◽  
Xiao-Fang Song ◽  
Jin-Yu Yang ◽  
Jiang-Tao Qin ◽  
...  

A new type of N-isopropyl acrylamide/high-substituted hydroxypropyl cellulose/graphite carbon nitride (NIPAAm/HHPC/g-C3N4) smart hydrogel-based photocatalyst with thermally driven characteristic was successfully prepared by electron beam pre-radiation polymerization and radiation cross-linking methods. The agglomeration and loss of g-C3N4 nanosheets can be avoided effectively, and ensured high photocatalytic activity under visible light, once the g-C3N4 nanosheets are uniformly dispersed into the skeleton of a thermosensitive NIPAAm/HHPC hydrogel. NIPAAm/HHPC/g-C3N4 (NHC) hydrogel was characterized by nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy. The microstructure of NHC was further characterized by scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller. The adsorption–photocatalytic removal rate of rhodamine B reached 71.4% at the mass ratio of g-C3N4 of 0.8% (NHC-0.8%) hydrogel in an aqueous medium under visible light. The thermal shrinkage ratio can reach 90.6% at 60°C after 5 min and could effectively achieve the function of recycling-free in a portable photocatalytic reaction device under the optimal conditions. Possible mechanism of adsorption–photocatalysis and thermally driven recycling-free on NHC hydrogel was also obtained. These thermally driven recycling-free characteristic and highly photocatalytic properties of the hybrid hydrogel-based photocatalyst show that it can be used as a promising new material with extensive applications in wastewater treatment.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2763
Author(s):  
Zuzanna Bielan ◽  
Szymon Dudziak ◽  
Agnieszka Sulowska ◽  
Daniel Pelczarski ◽  
Jacek Ryl ◽  
...  

Among various methods of improving visible light activity of titanium(IV) oxide, the formation of defects and vacancies (both oxygen and titanium) in the crystal structure of TiO2 is an easy and relatively cheap alternative to improve the photocatalytic activity. In the presented work, visible light active defective TiO2 was obtained by the hydrothermal reaction in the presence of three different oxidizing agents: HIO3, H2O2, and HNO3. Further study on the effect of used oxidant and calcination temperature on the physicochemical and photocatalytic properties of defective TiO2 was performed. Obtained nanostructures were characterized by X-ray diffractometry (XRD), specific surface area (BET) measurements, UV-Vis diffuse reflectance spectroscopy (DR-UV/Vis), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy. Degradation of phenol as a model pollutant was measured in the range of UV-Vis and Vis irradiation, demonstrating a significant increase of photocatalytic activity of defective TiO2 samples above 420 nm, comparing to non-defected TiO2. Correlation of EPR, UV-Vis, PL, and photodegradation results revealed that the optimum concentration of HIO3 to achieve high photocatalytic activity was in the range of 20–50 mol%. Above that dosage, titanium vacancies amount is too high, and the obtained materials’ photoactivity was significantly decreased. Studies on the photocatalytic mechanism using defective TiO2 have also shown that •O2− radical is mainly responsible for pollutant degradation.


Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 426 ◽  
Author(s):  
Xiaoya Yuan ◽  
Zijuan Feng ◽  
Jianjun Zhao ◽  
Jiawei Niu ◽  
Jiasen Liu ◽  
...  

Bismuth nanoparticles (BiNPs) and Zinc Oxide photocatalysts (BiNPs/ZnO) with different Bi loadings were successfully prepared via a facile chemical method. Their morphology and structure were thoroughly characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-Vis (Ultraviolet-Visible) diffuse reflectance spectroscopy (DRS), photoluminescence spectra (PL), and electrochemical impedance spectroscopy (EIS). The results showed that a modification of hexagonal wurtzite-phase ZnO nanoparticles with Bi is achievable with an intimate interfacial interaction within its composites. The performance of the photocatalytic Cr(VI) removal under visible light irradiation indicated that BiNPs/ZnO exhibited a superior removal performance to bare ZnO, Bi, and the counterpart sample prepared using a physical mixing method. The excellent performance of the BiNPs/ZnO photocatalysts could be ascribed to the synergistic effect between the considerable physical Cr (VI) adsorption and enhanced absorption intensity in the visible light region, due to the surface plasmon resonance (SPR) as well as the effective transfer and separation of the photogenerated charge carriers at the interface.


2015 ◽  
Vol 30 (9) ◽  
pp. 2024-2024 ◽  
Author(s):  
Letizia Monico ◽  
Koen Janssens ◽  
Marine Cotte ◽  
Aldo Romani ◽  
Lorenzo Sorace ◽  
...  

Correction for ‘Synchrotron-based X-ray spectromicroscopy and electron paramagnetic resonance spectroscopy to investigate the redox properties of lead chromate pigments under the effect of visible light’ by Letizia Monico et al., J. Anal. At. Spectrom., 2015, 30, 1500–1510.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Nguyen Thi Lan ◽  
Vo Hoang Anh ◽  
Hoang Duc An ◽  
Nguyen Phi Hung ◽  
Dao Ngoc Nhiem ◽  
...  

In this study, C-N-S-tridoped TiO2 composite was fabricated from TiO2 prepared from ilmenite ore and thiourea by means of hydrothermal method. The obtained material was characterized by X-ray diffraction, Raman scattering spectroscopy, UV-Vis diffuse reflectance spectroscopy, nitrogen adsorption-desorption isotherms, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It was found that C-N-S-tridoped TiO2 material has a large specific surface area, showing good photocatalytic activity on the degradation of antibiotic tetracycline in visible light region. The study on the mechanism of tetracycline photodegradation using the liquid chromatography with mass spectrometry was performed. It was found that tetracycline has been degraded over C-N-S-tridoped TiO2 catalyst into many different intermediates which can eventually be converted into CO2 and H2O. The kinetics of photocatalytic decomposition of tetracycline were investigated. In addition, the obtained material could catalyze well the degradation of other antibiotics (ciprofloxacin and chloramphenicol) and dyes (rhodamine-B, methylene blue, and organe red). The catalyst was stable after five recycles with slight loss of catalytic activity, which indicates great potential for practical application of C-N-S-tridoped TiO2 catalyst in treatment of wastewater containing tetracycline in particular or antibiotics in general.


2018 ◽  
Vol 78 (8) ◽  
pp. 1802-1811 ◽  
Author(s):  
Jiwei Huang ◽  
Changlong Yang ◽  
Qiang Song ◽  
Dongxue Liu ◽  
Li Li

Abstract A series of different ratios of Ag2S/ZnO/ZnS nanocomposites with visible light response were prepared by a microwave-assisted hydrothermal two-step method, whose composition, crystalline structure, morphology and surface physicochemical properties were well-characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (UV–vis/DRS), photoluminescence spectrum (PL), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and N2 adsorption–desorption measurements. Results showed that as-composites mainly consisted of ZnS crystal phase, whose grain size increased obviously compared with non Ag2S samples. At the same time, due to the introduction of narrow band gap Ag2S, the synthesized composite can effectively increase the visible optical absorption of ZnO/ZnS composites. Among them, 1% Ag2S/ZnO/ZnS showed a mixed structure of nano-line and nano-particle, of which BET value increased significantly, and the morphology was more excellent. Photocatalytic activities of a series of Ag2S/ZnO/ZnS composites under different light sources were studied using methyl orange as a model molecule, and 1% Ag2S/ZnO/ZnS was taken as the best one. Meanwhile, 1% Ag2S/ZnO/ZnS also showed a good degradation effect on other dyes with different structures, and its degradation efficiency did not change significantly after three cycles, showing certain stability. In addition, composites with Ag2S loading of 1% possessed the highest hydrogen production ability of photolysis water, indicating that the introduction of Ag2S had significantly enhanced the catalytic performance.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 392 ◽  
Author(s):  
Meng Sun ◽  
Raja Senthil ◽  
Junqing Pan ◽  
Sedahmed Osman ◽  
Abrar Khan

In this work, we have synthesized the rod-on-rod–like α-FeOOH/α-AgVO3 nanocomposite photocatalysts with the different amounts of solvothermally synthesized α-FeOOH nanorods via a simple co-precipitation method. The as-synthesized photocatalysts were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, UV−Visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM), element mapping, high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS) analysis. The observed SEM images show that both α-AgVO3 and α-FeOOH exhibits the rod-shaped morphology with nano size. Furthermore, the photocatalytic activities of the obtained photocatalysts were evaluated towards the degradation of Rhodamine B (RhB) under visible-light irradiation. It is demonstrated that the 3 mg α-FeOOH added to the α-FeOOH/α-AgVO3 nanocomposite exhibited an enhanced photocatalytic performance as compared with the pure α-AgVO3 and α-FeOOH. This significant improvement can be attributed to the increased photo-excited electron-hole pair separation efficiency, large portion of visible-light absorption ability and the reduced recombination of the electron-hole pair. The recycling test revealed that the optimized nanocomposite exhibited good photostability and reusability properties. In addition, the believable photodegradation mechanism of RhB using α-FeOOH/α-AgVO3 nanocomposite is proposed. Hence, the developed α-FeOOH/α-AgVO3 nanocomposite is a promising material for the degradation of organic pollutants in an aqueous environment.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jianhui Huang ◽  
Wahkit Cheuk ◽  
Yifan Wu ◽  
Frank S. C. Lee ◽  
Wingkei Ho

Bismuth-doped TiO2submicrospheres were synthesized by ultrasonic spray pyrolysis. The prepared bismuth-doped titania was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), and X-ray photoelectron spectroscopy (XPS). Aqueous photocatalytic activity was evaluated by the decomposition of methyl orange under visible-light irradiation. The results indicate that doping of bismuth remarkably affects the phase composition, crystal structure, and the photocatalytic activity. The sample with 2% Bi exhibits the optimum photocatalytic activity.


2021 ◽  
Author(s):  
N Sujatha ◽  
M Meenachi ◽  
S Mohammed Harshulkhanb ◽  
H.H Hegazy

Abstract In later years, numerous viable photocatalysts have been created in order to illuminate the issues of natural toxins. In this work, heterostructured photocatalysts Ag3VO4/g-C3N4 were prepared by effortless hydrothermal route in order to anchor Ag3VO4 on the surface of the g-C3N4 nanosheets. The prepared samples were fairly characterized using X-ray diffraction (XRD), Energy dispersive analysis of X-rays (EDAX), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-DRS), photoluminescence, and X-ray photoelectron spectroscopy (XPS) techniques. The photocatalytic activity of the samples was evaluated by degrading malachite green (MG) and 2,4 dimethyl phenol (DMP) in aqueous solution under visible light irradiation. Compared with Ag3VO4 and g-C3N4, the heterojuncted photocatalyst 50 wt% Ag3VO4/g-C3N4 exhibits the best activity such as high degradation efficiency (99%), high apparent constant (0.0923 min− 1) and long term stability towards DMP under visible light irradiation. The development of a phase scheme heterojunction between Ag3VO4 and g-C3N4 improved the photocatalytic efficiency of Ag3VO4/g-C3N4 composites. Furthermore, the porous structure of g-C3N4 and the effect of Ag surface plasmon resonance (SPR) speed up the isolation and transfer of electron-hole pairs, reducing the likelihood of recombination.


Sign in / Sign up

Export Citation Format

Share Document