scholarly journals Predefined-Time Modified Function Projective Synchronization for Multiscroll Chaotic Systems via Sliding Mode Control Technology

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Qiaoping Li ◽  
Chao Yue

In the context of chaotic secure communication and based on the sliding mode control technology, this article investigates the predefined-time modified function projective synchronization for the Colpitts oscillator multiscroll hyperchaotic systems. Firstly, a four-dimensional multiscroll hyperchaotic system is introduced and the predefined-time synchronization is defined. Subsequently, applying a novel predefined-time stability criterion, an integral terminal sliding mode surface is constructed for the synchronization error system to ensure that the sliding motion is stable within a predefined time; meanwhile, an approaching controller is designed to enable the error system to reach and remain on the sliding mode surface within another predefined time, so as to ensure the realization of the predefined-time synchronization. Finally, the simulation experiments are presented to verify the effectiveness of derived theoretical results.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Junbiao Guan ◽  
Kaihua Wang

A new fractional-order chaotic system is addressed in this paper. By applying the continuous frequency distribution theory, the indirect Lyapunov stability of this system is investigated based on sliding mode control technique. The adaptive laws are designed to guarantee the stability of the system with the uncertainty and external disturbance. Moreover, the modified generalized projection synchronization (MGPS) of the fractional-order chaotic systems is discussed based on the stability theory of fractional-order system, which may provide potential applications in secure communication. Finally, some numerical simulations are presented to show the effectiveness of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document