scholarly journals Modeling and Prediction of Stock Price with Convolutional Neural Network Based on Blockchain Interactive Information

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wei Zhang ◽  
Ke-xin Tao ◽  
Jun-feng Li ◽  
Yan-chun Zhu ◽  
Jing Li

The interactive information in blockchain architecture establishes an effective communication channel between users and enterprises, enabling them to communicate in a comprehensive and effective manner. Therefore, taking blockchain interactive information as the research object, this paper explores how the intervention of official information on investors affects the stock price movement and then makes predictions on stock prices according to the emotional tendency of interactive information. With the contextual information fusion, a sentiment computing model based on a convolutional neural network is established to extract and quantify the emotional features of blockchain interactive information. Combined with investors’ emotional features, the stock price prediction model based on long short-term memory is proposed. The experiment results show that the accuracy of the model has been improved by incorporating the intervened emotional features, thereby proving that information clarification can have a positive effect on the stock price.

2021 ◽  
Vol 11 (9) ◽  
pp. 3984
Author(s):  
Xinpeng Yu ◽  
Dagang Li

Stock performance prediction plays an important role in determining the appropriate timing of buying or selling a stock in the development of a trading system. However, precise stock price prediction is challenging because of the complexity of the internal structure of the stock price system and the diversity of external factors. Although research on forecasting stock prices has been conducted continuously, there are few examples of the successful use of stock price forecasting models to develop effective trading systems. Inspired by the process of human stock traders looking for trading opportunities, we propose a deep learning framework based on a hybrid convolutional recurrent neural network (HCRNN) to predict the important trading points (IPs) that are more likely to be followed by a significant stock price rise to capture potential high-margin opportunities. In the HCRNN model, the convolutional neural network (CNN) performs convolution on the most recent region to capture local fluctuation features, and the long short-term memory (LSTM) approach learns the long-term temporal dependencies to improve stock performance prediction. Comprehensive experiments on real stock market data prove the effectiveness of our proposed framework. Our proposed method ITPP-HCRNN achieves an annualized return that is 278.46% more than that of the market.


Author(s):  
Jimmy Ming-Tai Wu ◽  
Zhongcui Li ◽  
Norbert Herencsar ◽  
Bay Vo ◽  
Jerry Chun-Wei Lin

AbstractIn today’s society, investment wealth management has become a mainstream of the contemporary era. Investment wealth management refers to the use of funds by investors to arrange funds reasonably, for example, savings, bank financial products, bonds, stocks, commodity spots, real estate, gold, art, and many others. Wealth management tools manage and assign families, individuals, enterprises, and institutions to achieve the purpose of increasing and maintaining value to accelerate asset growth. Among them, in investment and financial management, people’s favorite product of investment often stocks, because the stock market has great advantages and charm, especially compared with other investment methods. More and more scholars have developed methods of prediction from multiple angles for the stock market. According to the feature of financial time series and the task of price prediction, this article proposes a new framework structure to achieve a more accurate prediction of the stock price, which combines Convolution Neural Network (CNN) and Long–Short-Term Memory Neural Network (LSTM). This new method is aptly named stock sequence array convolutional LSTM (SACLSTM). It constructs a sequence array of historical data and its leading indicators (options and futures), and uses the array as the input image of the CNN framework, and extracts certain feature vectors through the convolutional layer and the layer of pooling, and as the input vector of LSTM, and takes ten stocks in U.S.A and Taiwan as the experimental data. Compared with previous methods, the prediction performance of the proposed algorithm in this article leads to better results when compared directly.


2020 ◽  
Vol 218 ◽  
pp. 01026
Author(s):  
Qihang Ma

The prediction of stock prices has always been a hot topic of research. However, the autoregressive integrated moving average (ARIMA) model commonly used and artificial neural networks (ANN) still have their own advantages and disadvantages. The use of long short-term memory (LSTM) networks model for prediction also shows interesting possibilities. This article compares three models specifically through the analysis of the principles of the three models and the prediction results. In the end, it is believed that the LSTM model may have the best predictive ability, but it is greatly affected by the data processing. The ANN model performs better than that of the ARIMA model. The combination of time series and external factors may be a worthy research direction.


2021 ◽  
Author(s):  
Jaydip Sen ◽  
Sidra Mehtab ◽  
Abhishek Dutta

Prediction of stock prices has been an important area of research for a long time. While supporters of the <i>efficient market hypothesis</i> believe that it is impossible to predict stock prices accurately, there are formal propositions demonstrating that accurate modeling and designing of appropriate variables may lead to models using which stock prices and stock price movement patterns can be very accurately predicted. Researchers have also worked on technical analysis of stocks with a goal of identifying patterns in the stock price movements using advanced data mining techniques. In this work, we propose an approach of hybrid modeling for stock price prediction building different machine learning and deep learning-based models. For the purpose of our study, we have used NIFTY 50 index values of the National Stock Exchange (NSE) of India, during the period December 29, 2014 till July 31, 2020. We have built eight regression models using the training data that consisted of NIFTY 50 index records from December 29, 2014 till December 28, 2018. Using these regression models, we predicted the <i>open</i> values of NIFTY 50 for the period December 31, 2018 till July 31, 2020. We, then, augment the predictive power of our forecasting framework by building four deep learning-based regression models using long-and short-term memory (LSTM) networks with a novel approach of walk-forward validation. Using the grid-searching technique, the hyperparameters of the LSTM models are optimized so that it is ensured that validation losses stabilize with the increasing number of epochs, and the convergence of the validation accuracy is achieved. We exploit the power of LSTM regression models in forecasting the future NIFTY 50 <i>open</i> values using four different models that differ in their architecture and in the structure of their input data. Extensive results are presented on various metrics for all the regression models. The results clearly indicate that the LSTM-based univariate model that uses one-week prior data as input for predicting the next week's <i>open</i> value of the NIFTY 50 time series is the most accurate model.


2014 ◽  
Vol 989-994 ◽  
pp. 1635-1640
Author(s):  
Hong Liu ◽  
Xiao Yan Lv

In view of the deficiency of the standard back-propagation algorithm based on steepest descent method, a new kind of optimization strategy called invasive weed optimization (IWO) algorithm is introduced into the training process of feed-forward neural networks, and then a prediction model based on IWO feed-forward neural network (IWO-NN) is given. By the dynamic adjustment of standard deviation of the distribution of offspring individuals in IWO, the local convergence speed of networks is improved and the defect of trapping into a local optimum is reduced. By the empirical study of stock price prediction in Sany Heavy Industry, the results show that this method has better global astringency, robustness, and it is insensitive to initial values.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sarah Dong ◽  
Amber Wang

Predicting stock prices has been both challenging and controversial. Since it first spread through the United States, the COVID-19 pandemic has impacted the stock market in a multitude of ways. Thus, stock price prediction has become even more challenging. Recurrent neural networks (RNN) have been widely used in many fields to predict financial time series. In this study, Long Short-Term Memory (LSTM), a special form of RNN, is used to predict the stock market direction for the US airline industry by using NYSE Arca Airline Index (XAL). The LSTM model was optimized through changing different hyperparameters of the model architecture to find the best combination for increased accuracy and performance evaluated by several metrics, including raw RMSE (3.51) and MAPA (4.6%), and very high MAPA (95.4%) and R^2 (0.978).


Sign in / Sign up

Export Citation Format

Share Document