scholarly journals Stochastic Restricted LASSO-Type Estimator in the Linear Regression Model

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Manickavasagar Kayanan ◽  
Pushpakanthie Wijekoon

Among several variable selection methods, LASSO is the most desirable estimation procedure for handling regularization and variable selection simultaneously in the high-dimensional linear regression models when multicollinearity exists among the predictor variables. Since LASSO is unstable under high multicollinearity, the elastic-net (Enet) estimator has been used to overcome this issue. According to the literature, the estimation of regression parameters can be improved by adding prior information about regression coefficients to the model, which is available in the form of exact or stochastic linear restrictions. In this article, we proposed a stochastic restricted LASSO-type estimator (SRLASSO) by incorporating stochastic linear restrictions. Furthermore, we compared the performance of SRLASSO with LASSO and Enet in root mean square error (RMSE) criterion and mean absolute prediction error (MAPE) criterion based on a Monte Carlo simulation study. Finally, a real-world example was used to demonstrate the performance of SRLASSO.

2019 ◽  
Vol 52 (2) ◽  
pp. 115-127
Author(s):  
XIUQIN BAI ◽  
WEIXING SONG

This paper proposes an empirical likelihood confidence region for the regression coefficients in linear regression models when the regression coefficients are subjected to some equality constraints. The shape of the confidence set does not depend on the re-parametrization of the regression model induced by the equality constraint. It is shown that the asymptotic coverage rate attains the nominal confidence level and the Bartlett correction can successfully reduce the coverage error rate from $O(n^{-1})$ to $O(n^{-2})$, where n denotes the sample size. Simulation studies are conducted to evaluate the finite sample performance of the proposed empirical likelihood empirical confidence estimation procedure. Finally, a comparison study is conducted to compare the finite sample performance of the proposed and the classical ellipsoidal confidence sets based on normal theory.


2018 ◽  
Vol 8 (1) ◽  
pp. 135
Author(s):  
Mingao Yuan ◽  
Yue Zhang

In this paper, we apply empirical likelihood method to infer for the regression parameters in the partial functional linear regression models based on B-spline. We prove that the empirical log-likelihood ratio for the regression parameters converges in law to a weighted sum of independent chi-square distributions. Our simulation shows that the proposed empirical likelihood method produces more accurate confidence regions in terms of coverage probability than the asymptotic normality method.


2018 ◽  
Vol 28 (2) ◽  
pp. 323-358 ◽  
Author(s):  
Saverio Ranciati ◽  
Giuliano Galimberti ◽  
Gabriele Soffritti

1988 ◽  
Vol 5 (1) ◽  
pp. 49-57 ◽  
Author(s):  
A.K. Kashyap ◽  
P.A.V.B. Swamy ◽  
J.S. Mehta ◽  
R.D. Porter

Sign in / Sign up

Export Citation Format

Share Document