scholarly journals Fermi Degenerate Antineutrino Star Model of Dark Energy

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Tom F. Neiser

When the Large Hadron Collider resumes operations in 2021, several experiments will directly measure the motion of antihydrogen in free fall for the first time. Our current understanding of the universe is not yet fully prepared for the possibility that antimatter has negative gravitational mass. This paper proposes a model of cosmology, where the state of high energy density of the big bang is created by the collapse of an antineutrino star that has exceeded its Chandrasekhar limit. To allow the first neutrino stars and antineutrino stars to form naturally from an initial quantum vacuum state, it helps to assume that antimatter has negative gravitational mass. This assumption may also be helpful to identify dark energy. The degenerate remnant of an antineutrino star can today have an average mass density that is similar to the dark energy density of the ΛCDM model. When in hydrostatic equilibrium, this antineutrino star remnant can emit isothermal cosmic microwave background radiation and accelerate matter radially. This model and the ΛCDM model are in similar quantitative agreement with supernova distance measurements. Therefore, this model is useful as a purely academic exercise and as preparation for possible future discoveries.

Author(s):  
Tom F. Neiser

A new model of cosmology is proposed, where the state of high energy density commonly associated with the big bang is generated by the collapse of an antineutrino star that has exceeded its Chandrasekhar limit. To allow the first neutrino stars and antineutrino stars to form naturally from an initial quantum vacuum state, matter and antimatter are assumed to gravitationally repel. In this scenario, a degenerate antineutrino star in effective hydrostatic equilibrium has a density that is similar to the dark energy density of the ΛCDM model. When viewed from the core, such a star could today accelerate matter radially and emit the isothermal cosmic microwave background radiation, which addresses the horizon and flatness problems. This model and the ΛCDM model are in similar quantitative agreement with supernova distance measurements. The presented model is also in qualitative agreement with observed large-scale anisotropy and inhomogeneity, which distinguishes it from the ΛCDM model.


Author(s):  
Tom Neiser

The ΛCDM model successfully models the expansion of matter in the universe with an expansion of the underlying metric. However, it does not address the physical origin of the big bang and dark energy. A model of cosmology is proposed, where the state of high energy density of the big bang is created by the collapse of an antineutrino star that has exceeded its Chandrasekhar limit. To allow the first neutrino stars and antineutrino stars to form naturally from an initial quantum vacuum state, it helps to assume that antimatter has negative gravitational mass. While it may prove incorrect, this assumption may also help identify dark energy. The degenerate remnant of an antineutrino star can today have an average mass density that is similar to the dark energy density of the ΛCDM model. When in hydrostatic equilibrium, this antineutrino star remnant can emit isothermal cosmic microwave background radiation and accelerate matter radially. This model and the ΛCDM model are in similar quantitative agreement with supernova distance measurements. Other observational tests of the above model are also discussed.


1966 ◽  
Author(s):  
S. CHODOSH ◽  
E. KATSOULIS ◽  
M. ROSANSKY

2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2013 ◽  
Vol 28 (11) ◽  
pp. 1207-1212 ◽  
Author(s):  
Jian-Wen LI ◽  
Ai-Jun ZHOU ◽  
Xing-Quan LIU ◽  
Jing-Ze LI

2018 ◽  
Vol 28 (5) ◽  
pp. 273-278
Author(s):  
Beomhee Kang ◽  
Soonhyun Hong ◽  
Hongkwan Yoon ◽  
Dojin Kim ◽  
Chunjoong Kim

2000 ◽  
Author(s):  
Robert J. Schmitt ◽  
Jeffrey C. Bottaro ◽  
Mark Petrie ◽  
Paul E. Penwell

Sign in / Sign up

Export Citation Format

Share Document