scholarly journals Caffeine Effect on Cognitive Function during a Stroop Task: fNIRS Study

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yafei Yuan ◽  
Guanghao Li ◽  
Haoran Ren ◽  
Wei Chen

Acting as a brain stimulant, coffee resulted in heightening alertness, keeping arousal, improving executive speed, maintaining vigilance, and promoting memory, which are associated with attention, mood, and cognitive function. Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical method to monitor brain activity by measuring the absorption of the near-infrared light through the intact skull. This study is aimed at acquiring brain activation during executing task performance. The aim is to explore the effect of coffee on cognitive function by the fNIRS neuroimaging method, particularly on the prefrontal cortex regions. The behavioral experimental results on 31 healthy subjects with a Stroop task indicate that coffee can easily and effectively modulate the execute task performance by feedback information of the response time and accuracy rate. The findings of fNIRS showed that apparent hemodynamic changes were detected in the bilateral VLPFC regions and the brain activation regions varied with different coffee conditions.

2021 ◽  
Vol 9 ◽  
Author(s):  
Laura Bell ◽  
Vanessa Reindl ◽  
Jana A. Kruppa ◽  
Alexandra Niephaus ◽  
Simon H. Kohl ◽  
...  

Have you ever thought that light could tell you something about your brain? Light is a powerful tool that helps brain researchers understand the brain. Our eyes can only see <1% of the total light around us. Some of the light is red, so-called near-infrared light. This type of light can travel through the head and the top layers of the brain, and thereby gives researchers important information about brain activity. The technique that uses near-infrared light has a long name: functional near-infrared spectroscopy (fNIRS). In this article, we will show you what a fNIRS machine looks like and what it is like to take part in a fNIRS experiment. We will explain how we can use near-infrared light to better understand the brain. Finally, we will give you some examples of what we use fNIRS for and how it might help children who face difficulties in their daily lives in the long run.


2020 ◽  
Author(s):  
Laura Bell ◽  
Vanessa Reindl ◽  
Jana Kruppa ◽  
Alexandra Niephaus ◽  
Simon Huldreich Kohl ◽  
...  

Have you ever thought that light could tell you something about your brain? Light is a powerful tool that helps brain researchers understand the brain. Our eyes can only see less than 1 % of the total light around us. Some of the light is red, so-called near-infrared light. It can run through your head and the top layers of your brain and thereby gains important information about your brain activation. The technique that uses near-infrared light is called functional near-infrared spectroscopy. This term is very long, so we will call it “fNIRS” from now on. In this article, we will first show you how a fNIRS machine looks like and what it is like to take part in a fNIRS experiment. Next, we will explain how we can use near-infrared light to better understand the brain. Finally, we will give you some examples of what fNIRS can be used for and how we can use it to help children who face difficulties in their daily lives.


Author(s):  
Paola Pinti ◽  
Andrea Devoto ◽  
Isobel Greenhalgh ◽  
Ilias Tachtsidis ◽  
Paul W Burgess ◽  
...  

Abstract Anterior prefrontal cortex (PFC, Brodmann area 10) activations are often, but not always, found in neuroimaging studies investigating deception, and the precise role of this area remains unclear. To explore the role of the PFC in face-to-face deception, we invited pairs of participants to play a card game involving lying and lie detection while we used functional near infrared spectroscopy (fNIRS) to record brain activity in the PFC. Participants could win points for successfully lying about the value of their cards or for detecting lies. We contrasted patterns of brain activation when the participants either told the truth or lied, when they were either forced into this or did so voluntarily and when they either succeeded or failed to detect a lie. Activation in the anterior PFC was found in both lie production and detection, unrelated to reward. Analysis of cross-brain activation patterns between participants identified areas of the PFC where the lead player’s brain activity synchronized their partner’s later brain activity. These results suggest that during situations that involve close interpersonal interaction, the anterior PFC supports processing widely involved in deception, possibly relating to the demands of monitoring one’s own and other people’s behaviour.


2020 ◽  
Vol 6 ◽  
Author(s):  
Tripp Shealy ◽  
John Gero ◽  
Mo Hu ◽  
Julie Milovanovic

Abstract This paper presents the results of studying the brain activations of 30 engineering students when using three different design concept generation techniques: brainstorming, morphological analysis, and TRIZ. Changes in students’ brain activation in the prefrontal cortex were measured using functional near-infrared spectroscopy. The results are based on the area under the curve analysis of oxygenated hemodynamic response as well as an assessment of functional connectivity using Pearson’s correlation to compare students’ cognitive brain activations using these three different ideation techniques. The results indicate that brainstorming and morphological analysis demand more cognitive activation across the prefrontal cortex (PFC) compared to TRIZ. The highest cognitive activation when brainstorming and using morphological analysis is in the right dorsolateral PFC (DLPFC) and ventrolateral PFC. These regions are associated with divergent thinking and ill-defined problem-solving. TRIZ produces more cognitive activation in the left DLPFC. This region is associated with convergent thinking and making judgments. Morphological analysis and TRIZ also enable greater coordination (i.e., synchronized activation) between brain regions. These findings offer new evidence that structured techniques like TRIZ reduce cognitive activation, change patterns of activation and increase coordination between regions in the brain.


2020 ◽  
Vol 15 (12) ◽  
pp. 1326-1335
Author(s):  
Zhihao Wang ◽  
Yiwen Wang ◽  
Xiaolin Zhou ◽  
Rongjun Yu

Abstract People commonly use bluffing as a strategy to manipulate other people’s beliefs about them for gain. Although bluffing is an important part of successful strategic thinking, the inter-brain mechanisms underlying bluffing remain unclear. Here, we employed a functional near-infrared spectroscopy hyperscanning technique to simultaneously record the brain activity in the right temporal-parietal junction in 32 pairs of participants when they played a bluffing game against each other or with computer opponents separately. We also manipulated the penalty for bluffing (high vs low). Under the condition of high relative to low penalty, results showed a higher bluffing rate and a higher calling rate in human-to-human as compared to human-to-computer pairing. At the neural level, high relative to low penalty condition increased the interpersonal brain synchronization (IBS) in the right angular gyrus (rAG) during human-to-human as compared to human-to-computer interaction. Importantly, bluffing relative to non-bluffing, under the high penalty and human-to-human condition, resulted in an increase in response time and enhanced IBS in the rAG. Participants who bluffed more frequently also elicited stronger IBS. Our findings support the view that regions associated with mentalizing become synchronized during bluffing games, especially under the high penalty and human-to-human condition.


2021 ◽  
pp. 1-12
Author(s):  
Cristina Udina ◽  
Emmeline Ayers ◽  
Marco Inzitari ◽  
Joe Verghese

Background: Motoric cognitive risk syndrome (MCR) combines slow gait and cognitive complaints and has been proposed as a predementia syndrome. The nature of dual-task performance in MCR has not been established. Objective: To assess differences in dual-task performance between participants with and without MCR and to study the prefrontal cortex (PFC)-based brain activity during dual-task using functional near-infrared spectroscopy. Methods: Cohort study of community-dwelling non-demented older adults included in the “Central Control of Mobility in Aging” study. Comprehensive assessment included global cognition and executive function tests along with clinical variables. Dual-task paradigm consisted in walking while reciting alternate letters of the alphabet (WWT) on an electronic walkway. We compared dual-task performance between MCR (n = 60) and No MCR (n = 478) participants and assessed the relationship of dual-task performance with cognitive function. In a subsample, we compared PFC oxygenation during WWT between MCR (n = 32) and No MCR (n = 293). Results: In our sample of 538 high-functioning older adults (76.6±6.5 years), with 11.2% prevalence of MCR, dual-task cost was not significantly different, compared to No MCR participants. Among MCR participants, no significant relationship was found between WWT velocity and cognitive function, whereas No MCR participants with better cognitive function showed faster WWT velocities. PFC oxygenation during WWT was higher in MCR compared to No MCR (1.02±1.25 versus 0.66±0.83, p = 0.03). Conclusion: MCR participants showed no significant differences in the dual-task cost while exhibiting higher PFC oxygenation during dual-task walking. The dual-task performance (WWT velocity) in MCR participants was not related to cognition.


2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Sudeshna A Chatterjee ◽  
Rachael D Seidler ◽  
Jared W Skinner ◽  
Paige E Lysne ◽  
Chanoan Sumonthee ◽  
...  

Abstract Background and Objectives The influence of interindividual differences on brain activation during obstacle negotiation and the implications for walking performance are poorly understood in older adults. This study investigated the extent to which prefrontal recruitment during obstacle negotiation is explained by differences in age, executive function, and sex. These data were interpreted according to the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH) framework of brain aging. We also tested the association between prefrontal recruitment and walking performance. Research Design and Methods Prefrontal oxygenated hemoglobin concentration (O2Hb) was measured during typical walking (Typical) and obstacle negotiation (Obstacles) tasks in 50 adults aged 65 years and older using functional near-infrared spectroscopy. The primary outcome was the change in prefrontal recruitment (∆PFR), measured as Obstacles ∆O2Hb minus Typical ∆O2Hb. Multiple regression was used to test the relationship between ∆PFR and age, executive function measured by the Trail Making Test, and sex. Pearson’s correlation coefficient was used to investigate the association between ∆PFR and the cost of Obstacles walking speed relative to Typical walking. Results Age, executive function, and their interaction significantly predicted greater ∆PFR (R2 = 0.34, p = .01). Participants were subgrouped according to age and executive function to examine the interaction effects. Adults of lower age and with lower executive function exhibited greater ∆PFR during Obstacles compared to their peers with higher executive function (p = .03). Adults of advanced age exhibited a ceiling of prefrontal recruitment during obstacle negotiation, regardless of executive function level (p = .87). Greater ∆PFR was significantly associated with a smaller cost of Obstacles (r = 0.3, p = .03). Discussion and Implications These findings are consistent with the CRUNCH framework: neural inefficiency where a greater amount of brain activation is needed for task performance at a similar level, compensatory overactivation to prevent a steeper decline in task performance, and capacity limitation with a recruitment ceiling effect.


2019 ◽  
Vol 12 (06) ◽  
pp. 1930012 ◽  
Author(s):  
Keum-Shik Hong ◽  
M. Atif Yaqub

Functional near-infrared spectroscopy (fNIRS), a growing neuroimaging modality, has been utilized over the past few decades to understand the neuronal behavior in the brain. The technique has been used to assess the brain hemodynamics of impaired cohorts as well as able-bodied. Neuroimaging is a critical technique for patients with impaired cognitive or motor behaviors. The portable nature of the fNIRS system is suitable for frequent monitoring of the patients who exhibit impaired brain activity. This study comprehensively reviews brain-impaired patients: The studies involving patient populations and the diseases discussed in more than 10 works are included. Eleven diseases examined in this paper include autism spectrum disorder, attention-deficit hyperactivity disorder, epilepsy, depressive disorders, anxiety and panic disorder, schizophrenia, mild cognitive impairment, Alzheimer’s disease, Parkinson’s disease, stroke, and traumatic brain injury. For each disease, the tasks used for examination, fNIRS variables, and significant findings on the impairment are discussed. The channel configurations and the regions of interest are also outlined. Detecting the occurrence of symptoms at an earlier stage is vital for better rehabilitation and faster recovery. This paper illustrates the usability of fNIRS for early detection of impairment and the usefulness in monitoring the rehabilitation process. Finally, the limitations of the current fNIRS systems (i.e., nonexistence of a standard method and the lack of well-established features for classification) and future research directions are discussed. The authors hope that the findings in this paper would lead to advanced breakthrough discoveries in the fNIRS field in the future.


Sign in / Sign up

Export Citation Format

Share Document