scholarly journals New Fixed Point Theorems for θ ‐ ϕ -Contraction on Rectangular b -Metric Spaces

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Abdelkarim Kari ◽  
Mohamed Rossafi ◽  
El Miloudi Marhrani ◽  
Mohamed Aamri

The Banach contraction principle is the most celebrated fixed point theorem and has been generalized in various directions. In this paper, inspired by the concept of θ ‐ ϕ -contraction in metric spaces, introduced by Zheng et al., we present the notion of θ ‐ ϕ -contraction in b -rectangular metric spaces and study the existence and uniqueness of a fixed point for the mappings in this space. Our results improve many existing results.

Author(s):  
Abdelkarim Kari ◽  
Mohamed Rossafi ◽  
Hamza Saffaj ◽  
El Miloudi Marhrani ◽  
Mohamed Aamri

In the last few decades, a lot of generalizations of the Banach contraction principle had been introduced. In this paper, we present the notion of θ -contraction and θ − ϕ -contraction in generalized asymmetric metric spaces to study the existence and uniqueness of the fixed point for them. We will also provide some illustrative examples. Our results improve many existing results.


2018 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Koushik Sarkar ◽  
Manoranjan Singha

N. Souayah [10] introduced the concept of partial Sb-metric spaces. In this paper, we established a fixed point theorem for a new class of contractive mappings and a generalization of Theorem 2 from [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Am. Math. Soc. 136, (2008), 1861-1869] in partial Sb-metric spaces. We provide an example in support of our result.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3295-3305 ◽  
Author(s):  
Antonella Nastasi ◽  
Pasquale Vetro

Motivated by a problem concerning multi-valued mappings posed by Reich [S. Reich, Some fixed point problems, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 57 (1974) 194-198] and a paper of Jleli and Samet [M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014:38 (2014) 1-8], we consider a new class of multi-valued mappings that satisfy a ?-contractive condition in complete metric spaces and prove some fixed point theorems. These results generalize Reich?s and Mizoguchi-Takahashi?s fixed point theorems. Some examples are given to show the usability of the obtained results.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Ing-Jer Lin ◽  
Wei-Shih Du ◽  
Qiao-Feng Zheng

Some new fixed point theorems are established in the setting of complex valuedG-metric spaces. These new results improve and generalize Kang et al.’s results, the Banach contraction principle, and some well-known results in the literature.


2015 ◽  
Vol 31 (1) ◽  
pp. 127-134
Author(s):  
DARIUSZ WARDOWSKI ◽  
◽  
NGUYEN VAN DUNG ◽  

In this paper, we show that the existence of fixed points in some known fixed point theorems in the literature is a consequence of the Banach contraction principle.


Author(s):  
Clement Boateng Ampadu

In [1], Wardowski introduced the F-contractions, and used it to prove the Banach contraction principle. In this paper we introduce a concept of F-interpolative Berinde weak contraction, and use it to prove the interpolative Berinde weak mapping theorem of [2].


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
M. R. Alfuraidan ◽  
M. A. Khamsi

We discuss Caristi’s fixed point theorem for mappings defined on a metric space endowed with a graph. This work should be seen as a generalization of the classical Caristi’s fixed point theorem. It extends some recent works on the extension of Banach contraction principle to metric spaces with graph.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 136
Author(s):  
Salvador Romaguera

We solve a question posed by E. Karapinar, F. Khojasteh and Z.D. Mitrović in their paper “A Proposal for Revisiting Banach and Caristi Type Theorems in b-Metric Spaces”. We also characterize the completeness of b-metric spaces with the help of a variant of the contractivity condition introduced by the authors in the aforementioned article.


2015 ◽  
Vol 31 (3) ◽  
pp. 403-410
Author(s):  
FRANCESCA VETRO ◽  

Jleli and Samet gave a new generalization of the Banach contraction principle in the setting of Branciari metric spaces [Jleli, M. and Samet, B., A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014:38 (2014)]. The purpose of this paper is to study the existence of fixed points for multivalued mappings, under a similar contractive condition, in the setting of complete metric spaces. Some examples are provided to illustrate the new theory.


Sign in / Sign up

Export Citation Format

Share Document