Connection-Based Multiplicative Zagreb Indices of Dendrimer Nanostars
The field of graph theory is broadly growing and playing a remarkable role in cheminformatics, mainly in chemistry and mathematics in developing different chemical structures and their physicochemical properties. Mathematical chemistry provides a platform to study these physicochemical properties with the help of topological indices (TIs). A topological index (TI) is a function that connects a numeric number to each molecular graph. Zagreb indices (ZIs) are the most studied TIs. In this paper, we establish general expressions to calculate the connection-based multiplicative ZIs, namely, first multiplicative ZIs, second multiplicative ZIs, third multiplicative ZIs, and fourth multiplicative ZIs, of two renowned dendrimer nanostars. The defined expressions just depend on the step of growth of these dendrimers. Moreover, we have compared our calculated for both type of dendrimers with each other.