scholarly journals Connection-Based Multiplicative Zagreb Indices of Dendrimer Nanostars

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Aqsa Sattar ◽  
Muhammad Javaid ◽  
Ebenezer Bonyah

The field of graph theory is broadly growing and playing a remarkable role in cheminformatics, mainly in chemistry and mathematics in developing different chemical structures and their physicochemical properties. Mathematical chemistry provides a platform to study these physicochemical properties with the help of topological indices (TIs). A topological index (TI) is a function that connects a numeric number to each molecular graph. Zagreb indices (ZIs) are the most studied TIs. In this paper, we establish general expressions to calculate the connection-based multiplicative ZIs, namely, first multiplicative ZIs, second multiplicative ZIs, third multiplicative ZIs, and fourth multiplicative ZIs, of two renowned dendrimer nanostars. The defined expressions just depend on the step of growth of these dendrimers. Moreover, we have compared our calculated for both type of dendrimers with each other.

Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 320 ◽  
Author(s):  
Young Kwun ◽  
Abaid Virk ◽  
Waqas Nazeer ◽  
M. Rehman ◽  
Shin Kang

The application of graph theory in chemical and molecular structure research has far exceeded people’s expectations, and it has recently grown exponentially. In the molecular graph, atoms are represented by vertices and bonds by edges. Topological indices help us to predict many physico-chemical properties of the concerned molecular compound. In this article, we compute Generalized first and multiplicative Zagreb indices, the multiplicative version of the atomic bond connectivity index, and the Generalized multiplicative Geometric Arithmetic index for silicon-carbon Si2C3−I[p,q] and Si2C3−II[p,q] second.


2018 ◽  
Vol 26 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Prosanta Sarkar ◽  
Nilanjan De ◽  
Anita Pal

Abstract In chemical graph theory, chemical structures are model edthrough a graph where atoms are considered as vertices and edges are bonds between them. In chemical sciences, topological indices are used for understanding the physicochemical properties of molecules. In this work, we study the generalized Zagreb index for three types of carbon allotrope’s theoretically.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750066 ◽  
Author(s):  
Muhammad Imran ◽  
Shehnaz Akhter

The topological indices are useful tools to the theoretical chemists that are provided by the graph theory. They correlate certain physicochemical properties such as boiling point, strain energy, stability, etc. of chemical compounds. For a graph [Formula: see text], the double graph [Formula: see text] is a graph obtained by taking two copies of graph [Formula: see text] and joining each vertex in one copy with the neighbors of corresponding vertex in another copy and strong double graph SD[Formula: see text] of the graph [Formula: see text] is the graph obtained by taking two copies of the graph [Formula: see text] and joining each vertex [Formula: see text] in one copy with the closed neighborhood of the corresponding vertex in another copy. In this paper, we compute the general sum-connectivity index, general Randi[Formula: see text] index, geometric–arithmetic index, general first Zagreb index, first and second multiplicative Zagreb indices for double graphs and strong double graphs and derive the exact expressions for these degree-base topological indices for double graphs and strong double graphs in terms of corresponding index of original graph [Formula: see text].


2021 ◽  
Vol 19 (1) ◽  
pp. 646-652
Author(s):  
Dongming Zhao ◽  
Manzoor Ahmad Zahid ◽  
Rida Irfan ◽  
Misbah Arshad ◽  
Asfand Fahad ◽  
...  

Abstract In recent years, several structure-based properties of the molecular graphs are understood through the chemical graph theory. The molecular graph G G of a molecule consists of vertices and edges, where vertices represent the atoms in a molecule and edges represent the chemical bonds between these atoms. A numerical quantity that gives information related to the topology of the molecular graphs is called a topological index. Several topological indices, contributing to chemical graph theory, have been defined and vastly studied. Recent inclusions in the class of the topological indices are the K-Banhatti indices. In this paper, we established the precise formulas for the first and second K-Banhatti, modified K-Banhatti, K-hyper Banhatti, and hyper Revan indices of silicon carbide Si 2 C 3 {{\rm{Si}}}_{2}{{\rm{C}}}_{3} - III [ n , m ] {\rm{III}}\left[n,m] . In addition, we present the graphical analysis along with the comparison of these indices for Si 2 C 3 {{\rm{Si}}}_{2}{{\rm{C}}}_{3} - III [ n , m ] {\rm{III}}\left[n,m] .


2019 ◽  
Vol 27 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Nisar Fatima ◽  
Akhlaq Ahmad Bhatti ◽  
Akbar Ali ◽  
Wei Gao

Abstract It is well known fact that several physicochemical properties of chemical compounds are closely related to their molecular structure. Mathematical chemistry provides a method to predict the aforementioned properties of compounds using topological indices. The Zagreb indices are among the most studied topological indices. Recently, three modified versions of the Zagreb indices were proposed independently in [Ali, A.; Trinajstić, N. A novel/old modification of the first Zagreb index, arXiv:1705.10430 [math.CO] 2017; Mol. Inform. 2018, 37, 1800008] and [Naji, A. M.; Soner, N. D.; Gutman, I. On leap Zagreb indices of graphs, Commun. Comb. Optim. 2017, 2, 99–117], which were named as the Zagreb connection indices and the leap Zagreb indices, respectively. In this paper, we check the chemical applicability of the newly considered Zagreb connection indices on the set of octane isomers and establish general expressions for calculating these indices of two well-known dendrimer nanostars.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Abid Mahboob ◽  
Sajid Mahboob ◽  
Mohammed M. M. Jaradat ◽  
Nigait Nigar ◽  
Imran Siddique

The use of graph theory can be visualized in nanochemistry, computer networks, Google maps, and molecular graph which are common areas to elaborate application of this subject. In nanochemistry, a numeric number (topological index) is used to estimate the biological, physical, and structural properties of chemical compounds that are associated with the chemical graph. In this paper, we compute the first and second multiplicative Zagreb indices ( M 1 G and ( M 1 G )), generalized multiplicative geometric arithmetic index ( GA α II G ), and multiplicative sum connectivity and multiplicative product connectivity indices ( SCII G and PCII G ) of SiC 4 − I m , n and SiC 4 − II m , n .


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hafiza Bushra Mumtaz ◽  
Muhammad Javaid ◽  
Hafiz Muhammad Awais ◽  
Ebenezer Bonyah

The combination of mathematical sciences, physical chemistry, and information sciences leads to a modern field known as cheminformatics. It shows a mathematical relationship between a property and structural attributes of different types of chemicals called quantitative-structures’ activity and qualitative-structures’ property relationships that are utilized to forecast the chemical sciences and biological properties, in the field of engineering and technology. Graph theory has originated a significant usage in the field of physical chemistry and mathematics that is famous as chemical graph theory. The computing of topological indices (TIs) is a new topic of chemical graphs that associates many physiochemical characteristics of the fundamental organic compounds. In this paper, we used the M-polynomial-based TIs such as 1st Zagreb, 2nd Zagreb, modified 2nd Zagreb, symmetric division deg, general Randi c ´ , inverse sum, harmonic, and augmented indices to study the chemical structures of pent-heptagonal nanosheets of V C 5 C 7 and H C 5 C 7 . An estimation among the computed TIs with the help of numerical results is also presented.


2021 ◽  
Vol 10 (9) ◽  
pp. 3093-3111
Author(s):  
P. Kandan ◽  
S. Subramanian ◽  
P. Rajesh

Chemical graph theory is a mixture of chemistry and mathematics both play an important role in chemical graph theory. Chemistry provides a chemical compound and graph theory transform this chemical compound into a molecular graph, which are associated with some numerical values these values are known as topological indices. In this study we consider the weighted modification of new bond-additive Mostar indices that appear to provide quantitative measures of peripheral shapes of molecules. We have computed the Additively Weighted Mostar Index and Multiplicatively Weighted Mostar Index for Conical and Generalized gear graph.


2017 ◽  
Vol 72 (7) ◽  
pp. 647-654 ◽  
Author(s):  
M. Javaid ◽  
Jia-Bao Liu ◽  
M. A. Rehman ◽  
Shaohui Wang

AbstractA numeric quantity that characterises the whole structure of a molecular graph is called the topological index that predicts the physical features, chemical reactivities, and boiling activities of the involved chemical compound in the molecular graph. In this article, we give new mathematical expressions for the multiple Zagreb indices, the generalised Zagreb index, the fourth version of atom-bond connectivity (ABC4) index, and the fifth version of geometric-arithmetic (GA5) index of TiO2[m, n]. In addition, we compute the latest developed topological index called by Sanskruti index. At the end, a comparison is also included to estimate the efficiency of the computed indices. Our results extended some known conclusions.


2019 ◽  
Vol 17 (1) ◽  
pp. 955-962 ◽  
Author(s):  
Zhiqiang Zhang ◽  
Zeshan Saleem Mufti ◽  
Muhammad Faisal Nadeem ◽  
Zaheer Ahmad ◽  
Muhammad Kamran Siddiqui ◽  
...  

AbstractAtoms displayed as vertices and bonds can be shown by edges on a molecular graph. For such graphs we can find the indices showing their bioactivity as well as their physio-chemical properties such as the molar refraction, molar volume, chromatographic behavior, heat of atomization, heat of vaporization, magnetic susceptibility, and the partition coefficient. Today, industry is flourishing because of the interdisciplinary study of different disciplines. This provides a way to understand the application of different disciplines. Chemical graph theory is a mixture of chemistry and mathematics, which plays an important role in chemical graph theory. Chemistry provides a chemical compound, and graph theory transforms this chemical compound into a molecular graphwhich further is studied by different aspects such as topological indices.We will investigate some indices of the line graph of the subdivided graph (para-line graph) of linear-[s] Anthracene and multiple Anthracene.


Sign in / Sign up

Export Citation Format

Share Document