scholarly journals Research on the Reasonable Strengthening Time and Stability of Excavation Unloading Surrounding Rock of High-Stress Rock Mass

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wensong Xu ◽  
Wentao Xu ◽  
Yunhai Cheng

This study is aimed at better understanding the deformation and failure mechanism of surrounding rock during excavation unloading of a high-stress rock mass and determining the reasonable reinforcement time for the surrounding rock. To fulfill this aim, true triaxial tests were carried out on different loading and unloading paths during the unilateral unloading of a high-stress rock mass. The variational condition for minimization of plastic complementary energy is obtained, the optimal reinforcement time is determined, and the range of the plastic zone in the surrounding rock reinforced by anchor mesh-cable-grouting is compared and analyzed. The results are as follows: (1) Based on the Mohr-Coulomb yield criterion and the deformation reinforcement theory of surrounding rock, the stable state with the minimum reinforcement force is obtained. (2) After the true triaxial tests on the unilateral unloading of the third principal stress were carried out under different confining pressures, loading continued to be performed. Compared with rock failure without confining pressure, in the conventional uniaxial compression test, the failure of samples is dominated by composite splitting-shear failure; the unilateral unloading stress-concentration failure is a progressive failure process of splitting into plates followed by cutting into blocks and then the ejection of blocks and pieces. (3) The relationship between the time steps of the surrounding rock stability and the excavation distance is obtained. The supporting time can be divided into four stages: presupport stage, bolt reinforcement stage, anchor cable reinforcement stage, and grouting reinforcement stage. (4) In the range of within 5 m behind the tunneling face, the plastic zone of the surrounding rock with support is reduced by 7 m as compared with that with no support. In the range of over 5 m behind the tunneling face, the plastic zone of the roadway floor with support is reduced by 2.6 m as compared with that without support, and the deformation is reduced by 90%. These results can serve as a reference for controlling the behavior of surrounding rock during excavation unloading of high-stress rock masses.

2021 ◽  
Vol 13 (23) ◽  
pp. 13280
Author(s):  
Hai Wu ◽  
Qian Jia ◽  
Weijun Wang ◽  
Nong Zhong ◽  
Yiming Zhao

Taking a deep-mine horizontal roadway in inclined strata as our research object, the true triaxial simulation technique was used to establish a model of the inclined strata and carry out high-stress triaxial loading experiments. The experimental results show that the deformation of surrounding rock in the roadway presents heterogeneous deformation characteristics in time and space: the deformation of the surrounding rock at different positions of the roadway occurs at different times. In the process of deformation of the surrounding rock, deformation and failure occur at the floor of the roadway first, followed by the lower shoulder-angle of the roadway, and finally the rest of the roadway. The deformation amount in the various areas is different. The floor heave deformation of the roadway floor is the greatest and shows obvious left-right asymmetry. The deformation of the higher side is greater than that of the lower side. The model disassembly shows that the development of cracks in the surrounding rock is characterized by more cracks on the higher side and fewer cracks on the lower side but shows larger cracks across the width. The experimental results of high-stress deformation of the surrounding rock are helpful in the design of supports, the reinforcement scheme, and the parameter optimization of roadways in high-stress-inclined rock, and to improve the stability control of deep high-stress roadways.


Author(s):  
I. L. Ozornin ◽  
A. E. Balek ◽  
A. N. Kaiumova

The subject of the research is the lining of mine shafts and surrounding rock mass. The subject matter is the features of the stress-strain behavior of lining and adjacent rock mass in shafts and near-shaft underground openings in the Tenth Anniversary of Independence of Kazakhstan mine located in the tectonically high-stress and low-strength rock mass. The loading of the lining in the shafts and near-shaft openings in the Tenth Anniversary of Independence of Kazakhstan mine during construction is investigated, and the damages of the lining in the course of drivage in the nonuniform stress field are analyzed. The long-term periodic in-situ instrumental monitoring of stress variation in the lining of the mine shafts and near-shaft openings revealed the main influences on the process of load formation on the lining in the conditions of post-limiting deformation of surrounding rock mass. It is validated that the surrounding rock mass of the mine has a complex hierarchical block structure and is subjected to modern geodynamic movements. As the depth of mining is increased, surrounding rock mass of the mine shafts transfers to the condition of postlimiting stresses and strains. As a consequence, the lining of the shafts and near-shaft openings at different stages of construction experiences nonuniform concentrated loads, which violates integrity of the lining.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Wensong Xu ◽  
Guangming Zhao ◽  
Chongyan Liu ◽  
Xiangrui Meng ◽  
Ruofei Zhang ◽  
...  

To deeply analyze the failure evolution of surrounding rock during excavation-induced unloading of the high-stress rock mass, a multistage failure model was established based on revealed failure patterns. The critical conditions for wing cracks were determined. The slab crack buckling analysis was carried out. The true-triaxial rockburst testing system was used for the miniature model test to study the fracturing evolution of surrounding rocks during excavation-induced unloading of the high-stress rock mass. The research results indicated that harder rock samples had higher compressive strength. Moreover, the smaller peak strains implied more obvious yield/plastic stages of harder rock samples with high confining pressures and softer rock samples with low confining pressures. V-shaped grooves appeared at the beginning of the surrounding rock’s failure while spalling and splitting occurred as the stress increased. Finally, the entire sample’s overall splitting failure was observed, and the borehole bottom bulged upward. The harder rock masses had fewer fractures and higher degrees of failure. There were obvious V-shaped grooves on both sides of the marble cave wall. The tensile failure occurred near the opening surface and shear failure at a far distance. The sandstone's overall failure was related to tensile cracking, and splitting failure occurred far away from the opening surface, which was similar to the in situ failure of surrounding rocks during excavation-induced unloading of the high-stress rock mass. The results obtained are instrumental in the construction safety control and prevention of underground engineering disasters.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Ling Wang ◽  
Jin-feng Zou ◽  
Yu-ming Sheng

Considering the effect of seepage force, a dimensionless approach was introduced to improve the stress and strain increment approach on the stresses and radial displacement around a circular tunnel excavated in a strain-softening generalized Hoek–Brown or Mohr–Coulomb rock mass. The circular tunnel can be simplified as axisymmetric problem, and the plastic zone was divided into a finite number of concentric rings which satisfy the equilibrium and compatibility equations. Increments of stresses and strains for each ring were obtained by solving the equilibrium and compatibility equations. Then, the stresses and displacements in softening zone can be calculated. The correctness and reliability of the proposed approach were performed by the existing solutions.


Géotechnique ◽  
2002 ◽  
Vol 52 (9) ◽  
pp. 649-666 ◽  
Author(s):  
L. Callisto ◽  
A. Gajo ◽  
D. Muir Wood

2015 ◽  
Vol 17 (4) ◽  
pp. 497-509 ◽  
Author(s):  
Wei Zhou ◽  
Lifu Yang ◽  
Gang Ma ◽  
Xiaolin Chang ◽  
Yonggang Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document