scholarly journals A Hybrid Approach Based on Grey Wolf and Whale Optimization Algorithms for Solving Cloud Task Scheduling Problem

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jafar Ababneh

In the context of cloud computing, one problem that is frequently encountered is task scheduling. This problem has two primary implications, which are the planning of tasks on virtual machines and the attenuation of performance. In order to address the problem of task scheduling in cloud computing, requisite nontraditional optimization attitudes to attain the optima of the problem, the present paper puts forth a hybrid multiple-objective approach called hybrid grey wolf and whale optimization (HGWWO) algorithms, that integrates two algorithms, namely, the grey wolf optimizer (GWO) and the whale optimization algorithm (WOA), with the purpose of conjoining the advantages of each algorithm for minimizing costs, energy consumption, and total execution time needed for task implementation, beside that improving the use of resources. Assessment of the aims of the proposed approach is carried out with the help of the tool known as CloudSim. As pointed out by the results of the experimental work undertaken, the proposed approach has the capability of performing at a superior level by comparison to the original algorithms GWO and WOA on their own with regard to costs, energy consumption, makespan, use of resources, and degree of imbalance.

Author(s):  
Pooja Arora ◽  
Anurag Dixit

Purpose The advancements in the cloud computing has gained the attention of several researchers to provide on-demand network access to users with shared resources. Cloud computing is important a research direction that can provide platforms and softwares to clients using internet. However, handling huge number of tasks in cloud infrastructure is a complicated task. Thus, it needs a load balancing (LB) method for allocating tasks to virtual machines (VMs) without influencing system performance. This paper aims to develop a technique for LB in cloud using optimization algorithms. Design/methodology/approach This paper proposes a hybrid optimization technique, named elephant herding-based grey wolf optimizer (EHGWO), in the cloud computing model for LB by determining the optimal VMs for executing the reallocated tasks. The proposed EHGWO is derived by incorporating elephant herding optimization (EHO) in grey wolf optimizer (GWO) such that the tasks are allocated to the VM by eliminating the tasks from overloaded VM by maintaining the system performance. Here, the load of physical machine (PM), capacity and load of VM is computed for deciding whether the LB has to be done or not. Moreover, two pick factors, namely, task pick factor (TPF) and VM pick factor (VPF), are considered for choosing the tasks for reallocating them from overloaded VM to underloaded VM. The proposed EHGWO decides the task to be allocated in the VM based on the newly derived fitness functions. Findings The minimum load and makespan obtained in the existing methods, constraint measure based LB (CMLB), fractional dragonfly based LB algorithm (FDLA), EHO, GWO and proposed EHGWO for the maximum number of VMs is illustrated. The proposed EHGWO attained minimum makespan with value 814,264 ns and minimum load with value 0.0221, respectively. Meanwhile, the makespan values attained by existing CMLB, FDLA, EHO, GWO, are 318,6896 ns, 230,9140 ns, 1,804,851 ns and 1,073,863 ns, respectively. The minimum load values computed by existing methods, CMLB, FDLA, EHO, GWO, are 0.0587, 0.026, 0.0248 and 0.0234. On the other hand, the proposed EHGWO with minimum load value is 0.0221. Hence, the proposed EHGWO attains maximum performance as compared to the existing technique. Originality/value This paper illustrates the proposed LB algorithm using EHGWO in a cloud computing model using two pitch factors, named TPF and VPF. For initiating LB, the tasks assigned to the overloaded VM are reallocated to under loaded VMs. Here, the proposed LB algorithm adapts capacity and loads for the reallocation. Based on TPF and VPF, the tasks are reallocated from VMs using the proposed EHGWO. The proposed EHGWO is developed by integrating EHO and GWO algorithm using a new fitness function formulated by load of VM, migration cost, load of VM, capacity of VM and makespan. The proposed EHGWO is analyzed based on load and makespan.


Author(s):  
Nebojsa Bacanin ◽  
Timea Bezdan ◽  
Eva Tuba ◽  
Ivana Strumberger ◽  
Milan Tuba ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
LiWei Jia ◽  
Kun Li ◽  
Xiaoming Shi

The efficiency of task scheduling under cloud computing is related to the effectiveness of users. Aiming at the problems of long scheduling time, high cost consumption, and large virtual machine load in cloud computing task scheduling, an improved scheduling efficiency algorithm (called the improved whale optimization algorithm, referred to as IWC) is proposed. Firstly, a cloud computing task scheduling and distribution model with time, cost, and virtual machines as the main factors is constructed. Secondly, a feasible plan for each whale individual corresponding to cloud computing task scheduling is to find the best whale individual, which is the best feasible plan; in order to better find the optimal individual, we use the inertial weight strategy for the whale optimization algorithm to improve the local search ability and effectively prevent the algorithm from reaching premature convergence; we use the add operator and delete operator to screen individuals after each iteration which is completed and updated to improve the quality of understanding. In the simulation experiment, IWC was compared with the ant colony algorithm, particle swarm algorithm, and whale optimization algorithm under a different number of tasks. The results showed that the IWC algorithm has good results in terms of task scheduling time, scheduling cost, and virtual machine. The application is in cloud computing task scheduling.


Cloud computing offers many advantages by optimizing various parameters to meet the complex requirements .Some of the problems of cloud computing are utilization of resources and less energy consumption. More research and resources heterogeneity complicates the consolidation problem inside cloud architecture. VM placement refers to an ideal mapping of a task to virtual machines (VM) and virtual machines to physical machines (PM). The task-based VM placement algorithm is introduced in this research work. Here tasks are divided in accordance with their requirements, and then search for appropriate VM, again searching for appropriate PM, where selected VM could be sent. The algorithm decreases the use of resources by devaluation of the number of dynamic PMs while further decreases the rate of dismissal of make span and assignment. CloudSim test System is used to evaluate our algorithm in this research work. The outcomes of this implementation show the effectiveness of some current algorithms such as Round robin and Shortest Job First (SJF) algorithms.


The advancements in the cloud computing has gained the attention of several researchers to provide on-demand network access to users with shared resources. Cloud computing is important a research direction that can provide platforms and softwares to clients using internet. But, handling huge number of tasks in cloud infrastructure is a complicated task. Thus, it needs a load balancing method for allocating tasks to Virtual Machines (VMs) without influencing system performance. This paper proposes a load balancing technique, named Elephant Herd Grey Wolf Optimization (EHGWO) for balancing the loads. The proposed EHGWO is designed by integrating Elephant Herding Optimization (EHO) in Grey Wolf Optimizer (GWO) for selecting the optimal VMs for reallocation based on newly devised fitness function. The proposed load balancing technique considers different parameters of VMs and PMs for selecting the tasks to initiate the reallocation for load balancing. Here, two pick factors, named Task Pick Factor (TPF) and VM Pick Factor (VPF), are considered for allocating the tasks to balance the loads.


Author(s):  
G. Narendrababu Reddy ◽  
S. Phani Kumar

Cloud computing is the advancing technology that aims at providing services to the customers with the available resources in the cloud environment. When the multiple users request service from the cloud server, there is a need of the proper scheduling of the resources to attain good customer satisfaction. Therefore, this paper proposes the Regressive Whale Optimization (RWO) algorithm for workflow scheduling in the cloud computing environment. RWO is the meta-heuristic algorithm, which schedules the task depending on a fitness function. Here, the fitness function is defined based on three major constraints, such as resource utilization, energy, and the Quality of Service (QoS). Therefore, the proposed task scheduling requires minimum time and cost for executing the task in the virtual machines. The performance of the proposed method is analyzed using the four experimental setups, and the results of the analysis prove that the proposed multi-objective task scheduling method performs well than the existing methods. The evaluation metrics considered for analyzing the performance of the proposed workflow scheduling method are resource utilization, energy, cost, and time. Resource utilization is the process of making the most of the resources available for performing tasks. Energy is the quantitative property of the resource to perform tasks. The proposed method attains the maximum resource utilization at a rate of 0.0334, minimal rate of energy, scheduling cost, and time as 0.2291, 0.0181, and 0.0007, respectively.


Author(s):  
Gurpreet Singh ◽  
Manish Mahajan ◽  
Rajni Mohana

BACKGROUND: Cloud computing is considered as an on-demand service resource with the applications towards data center on pay per user basis. For allocating the resources appropriately for the satisfaction of user needs, an effective and reliable resource allocation method is required. Because of the enhanced user demand, the allocation of resources has now considered as a complex and challenging task when a physical machine is overloaded, Virtual Machines share its load by utilizing the physical machine resources. Previous studies lack in energy consumption and time management while keeping the Virtual Machine at the different server in turned on state. AIM AND OBJECTIVE: The main aim of this research work is to propose an effective resource allocation scheme for allocating the Virtual Machine from an ad hoc sub server with Virtual Machines. EXECUTION MODEL: The execution of the research has been carried out into two sections, initially, the location of Virtual Machines and Physical Machine with the server has been taken place and subsequently, the cross-validation of allocation is addressed. For the sorting of Virtual Machines, Modified Best Fit Decreasing algorithm is used and Multi-Machine Job Scheduling is used while the placement process of jobs to an appropriate host. Artificial Neural Network as a classifier, has allocated jobs to the hosts. Measures, viz. Service Level Agreement violation and energy consumption are considered and fruitful results have been obtained with a 37.7 of reduction in energy consumption and 15% improvement in Service Level Agreement violation.


Sign in / Sign up

Export Citation Format

Share Document