scholarly journals Intelligent Tourism Personalized Recommendation Based on Multi-Fusion of Clustering Algorithms

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
HongYan Liang

Actual tourism mining models are often used to discover potential information in documents, but tourism models without human knowledge often produce unexplainable topics. This paper combines big data technology to build a personalized recommendation system for smart tourism, model the contextual information usage ontology under the tourism information system, and give the association between various ontologies. Then, this paper uses a matrix to describe each discrete attribute and interval attribute and uses a vector to model the user’s preferences. In addition, this paper constructs an intelligent recommendation system based on the actual needs of travel recommendation and verifies the system in combination with experimental research. Through experimental analysis, it can be known that the intelligent tourism personalized recommendation system based on big data technology proposed in this paper has a high practical effect.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yi Fu ◽  
Min Yang ◽  
Di Han

This study combs through relevant literature, adopts a combination of typical sampling and random sampling, collects three big data technology-driven interactive marketing e-commerce companies in a specific period of Sina Weibo sample data for research, obtains historical information and data, and constructs a model. Through relevant analysis to eliminate invalid variables, we creatively selected three variables of Internet hot words, activities, and microtopics as independent variables and used marketing effects as dependent variables to carry out empirical analysis and study the marketing innovation of three representative companies based on big data technology. We discussed the use of self-media in interactive marketing e-commerce and the situation of marketing innovation based on self-media, focusing on the interactive relationship between marketing innovation and Internet word-of-mouth (brand image). Through research, we have derived the three-force model, which is the biggest result of this research, and provided a reference model for interactive marketing e-commerce companies to carry out follow-up marketing innovation based on the media. Limited to the level of research and ability, there are some deficiencies in the research, such as barrage marketing, big data marketing, and emotional computing, that have not been analyzed in depth. This article fully considers the dependence of small and medium e-commerce companies on e-commerce platforms in the era of big data and conducted detailed market research on their precision marketing strategies in the era of big data. This will be a new field that does not come from media marketing. This article intends to summarize a series of experiences and laws from special to general, from individuality to generality, so as to give full play to the role of personalized marketing in increasing website traffic and order conversion, in order to personalize the use of data by other e-commerce companies with marketing provides some valuable experiences and methods for reference.


Author(s):  
Ammar Alnahhas ◽  
Bassel Alkhatib

As the data on the online social networks is getting larger, it is important to build personalized recommendation systems that recommend suitable content to users, there has been much research in this field that uses conceptual representations of text to match user models with best content. This article presents a novel method to build a user model that depends on conceptual representation of text by using ConceptNet concepts that exceed the named entities to include the common-sense meaning of words and phrases. The model includes the contextual information of concepts as well, the authors also show a novel method to exploit the semantic relations of the knowledge base to extend user models, the experiment shows that the proposed model and associated recommendation algorithms outperform all previous methods as a detailed comparison shows in this article.


Author(s):  
Ruobing Xie ◽  
Zhijie Qiu ◽  
Jun Rao ◽  
Yi Liu ◽  
Bo Zhang ◽  
...  

Real-world integrated personalized recommendation systems usually deal with millions of heterogeneous items. It is extremely challenging to conduct full corpus retrieval with complicated models due to the tremendous computation costs. Hence, most large-scale recommendation systems consist of two modules: a multi-channel matching module to efficiently retrieve a small subset of candidates, and a ranking module for precise personalized recommendation. However, multi-channel matching usually suffers from cold-start problems when adding new channels or new data sources. To solve this issue, we propose a novel Internal and contextual attention network (ICAN), which highlights channel-specific contextual information and feature field interactions between multiple channels. In experiments, we conduct both offline and online evaluations with case studies on a real-world integrated recommendation system. The significant improvements confirm the effectiveness and robustness of ICAN, especially for cold-start channels. Currently, ICAN has been deployed on WeChat Top Stories used by millions of users. The source code can be obtained from https://github.com/zhijieqiu/ICAN.


Author(s):  
Sara Saeedi ◽  
Xueyang Zou ◽  
Mariel Gonzales ◽  
Steve Liang

The ubiquity of mobile sensors (such as GPS, accelerometer and gyroscope) together with increasing computational power have enabled an easier access to contextual information, which proved its value in next generation of the recommender applications. The importance of contextual information has been recognized by researchers in many disciplines, such as ubiquitous and mobile computing, to filter the query results and provide recommendations based on different user status. A context-aware recommendation system (CoARS) provides a personalized service to each individual user, driven by his or her particular needs and interests at any location and anytime. Therefore, a contextual recommendation system changes in real time as a user’s circumstances changes. CoARS is one of the major applications that has been refined over the years due to the evolving geospatial techniques and big data management practices. In this paper, a CoARS is designed and implemented to combine the context information from smartphones’ sensors and user preferences to improve efficiency and usability of the recommendation. The proposed approach combines user’s context information (such as location, time, and transportation mode), personalized preferences (using individuals past behavior), and item-based recommendations (such as item’s ranking and type) to personally filter the item list. The context-aware methodology is based on preprocessing and filtering of raw data, context extraction and context reasoning. This study examined the application of such a system in recommending a suitable restaurant using both web-based and android platforms. The implemented system uses CoARS techniques to provide beneficial and accurate recommendations to the users. The capabilities of the system is evaluated successfully with recommendation experiment and usability test.


2016 ◽  
Vol 16 (6) ◽  
pp. 146-159 ◽  
Author(s):  
Zhijun Zhang ◽  
Huali Pan ◽  
Gongwen Xu ◽  
Yongkang Wang ◽  
Pengfei Zhang

Abstract With the rapid development of social networks, location based social network gradually rises. In order to retrieve user’s most preferred attractions from a large number of tourism information, personalized recommendation algorithm based on the geographic location has been widely concerned in academic and industry. Aiming at the problem of low accuracy in personalized tourism recommendation system, this paper presents a personalized algorithm for tourist attraction recommendation – RecUFG Algorithm, which combines user collaborative filtering technology with friends trust relationships and geographic context. This algorithm fully exploits social relations and trust friendship between users, and by means of the geographic information between user and attraction location, recommends users most interesting attractions. Experimental results on real data sets demonstrate the feasibility and effectiveness of the algorithm. Compared with the existing recommendation algorithm, it has a higher prediction accuracy and customer satisfaction.


Sign in / Sign up

Export Citation Format

Share Document