scholarly journals Shikonin Promotes Apoptosis and Attenuates Migration and Invasion of Human Esophageal Cancer Cells by Inhibiting Tumor Necrosis Factor Receptor-Associated Protein 1 Expression and AKT/mTOR Signaling Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jingrong Huang ◽  
Li Zhao ◽  
Chengxian Gong ◽  
Yi Wang ◽  
Yinzong Qu ◽  
...  

The aim of this study was to investigate the anticancer effects of shikonin on esophageal cancer (EC) cells and explore the underlying molecular mechanism by identifying dysregulation in shikonin-induced tumor necrosis factor receptor-associated protein 1 (TRAP1) expression. The 3-(4, 5-dimethylthiazol-2-Yl)-2, 5-diphenyltetrazolium bromide assay and EDU assay were performed for cell viability determination. The reactive oxygen species level and mitochondrial membrane potential were evaluated using flow cytometry. The protein expression was detected using Western blot. In addition, cell migration and invasion were estimated. These results demonstrated that shikonin inhibited EC cell growth in a concentration-dependent manner and induced apoptosis through activation of the intracellular apoptotic signaling pathway. Moreover, TRAP1 downregulation promoted shikonin-induced reactive oxygen species release, whereas TRAP1 upregulation blocked it. Meanwhile, shikonin significantly promoted mitochondrial depolarization, accompanied by a large release of cytochrome C. Conversely, shikonin significantly decreased adenosine 5′-triphosphate release, demonstrating a significant intervention in the process of the glucose metabolism. In addition, not only shikonin but also short hairpin RNA (shRNA)-TRAP1 inhibited EC cell migration and invasion. shRNA-TRAP1 enhanced the inhibitory effect of shikonin on matrix metalloproteinase (MMP)2 and MMP9 expression. More interestingly, we demonstrated that shRNA-TRAP1 played a synergistic role in shikonin-mediated regulation of protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. Collectively, shikonin promoted apoptosis and attenuated migration and invasion of EC cells by inhibiting TRAP1 expression and AKT/mTOR signaling, indicating that shikonin may be a new drug for treating EC.

2019 ◽  
Vol 7 ◽  
Author(s):  
Fei Xiang ◽  
Si-yuan Ma ◽  
Yan-ling Lv ◽  
Dong-xia Zhang ◽  
Hua-pei Song ◽  
...  

Abstract Background Tumor necrosis factor receptor-associated protein 1 (TRAP1) plays a protective effect in hypoxic cardiomyocytes, but the precise mechanisms are not well clarified. The study is aimed to identify the mechanism of TRAP1 on hypoxic damage in cardiomyocytes. Methods In this study, the effects of TRAP1 and cytochrome c oxidase subunit II (COXII) on apoptosis in hypoxia-induced cardiomyocytes were explored using overexpression and knockdown methods separately. Results Hypoxia induced cardiomyocyte apoptosis, and TRAP1 overexpression notably inhibited apoptosis induced by hypoxia. Conversely, TRAP1 silencing promoted apoptosis in hypoxic cardiomyocytes. Further investigation revealed that the proapoptotic effects caused by the silencing of TRAP1 were prevented by COXII overexpression, whereas COXII knockdown reduced the antiapoptotic function induced by TRAP1 overexpression. Additionally, changes in the release of cytochrome c from mitochondria into the cytosol and the caspase-3 activity in the cytoplasm, as well as reactive oxygen species production, were found to be correlated with the changes in apoptosis. Conclusions The current study uncovered that TRAP1 regulates hypoxia-induced cardiomyocyte apoptosis through a mitochondria-dependent apoptotic pathway mediated by COXII, in which reactive oxygen species presents as an important component.


2014 ◽  
Vol 220 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Eun-Kyung Choi ◽  
Woon-Ki Kim ◽  
Ok-Joo Sul ◽  
Yun-Kyung Park ◽  
Eun-Sook Kim ◽  
...  

To elucidate the role of tumor necrosis factor receptor superfamily member 14 (TNFRSF14) in metabolic disturbance due to loss of ovarian function, ovariectomy (OVX) was performed in TNFRSF 14-knockout mice. OVX increased fat mass and infiltration of highly inflammatory CD11c cells in the adipose tissue (AT), which was analyzed by flow cytometry, and resulted in disturbance of glucose metabolism, whereas TNFRSF14 deficiency attenuated these effects. TNFRSF14 deficiency decreased recruitment of CD11c-expressing cells in AT and reduced the polarization of bone marrow-derived macrophages to M1. Upon engagement of LIGHT, a TNFRSF14 ligand, TNFRSF14 enhanced the expression of CD11c via generation of reactive oxygen species, suggesting a role of TNFRSF14 as a redox modulator. TNFRSF14 participated in OVX-induced AT inflammation via upregulation of CD11c, resulting in metabolic perturbation. TNFRSF14 could be used as a therapeutic target for the treatment of postmenopausal syndrome by reducing AT inflammation.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xianjian Qiu ◽  
Xudong Wang ◽  
Jincheng Qiu ◽  
Yuanxin Zhu ◽  
Tongzhou Liang ◽  
...  

Accumulation of reactive oxygen species (ROS), which can be induced by inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), can significantly inhibit the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). This process can contribute to the imbalance of bone remodeling, which ultimately leads to osteoporosis. Therefore, reducing the ROS generation during osteogenesis of BMSCs may be an effective way to reverse the impairment of osteogenesis. Melatonin (MLT) has been reported to act as an antioxidant during cell proliferation and differentiation, but its antioxidant effect and mechanism of action during osteogenesis of MSCs in the inflammatory microenvironment, especially in the presence of TNF-α, remain unknown and need further study. In our study, we demonstrate that melatonin can counteract the generation of ROS and the inhibitory osteogenesis of BMSCs induced by TNF-α, by upregulating the expression of antioxidases and downregulating the expression of oxidases. Meanwhile, MLT can inhibit the phosphorylation of p65 protein and block the degradation of IκBα protein, thus decreasing the activity of the NF-κB pathway. This study confirmed that melatonin can inhibit the generation of ROS during osteogenic differentiation of BMSCs and reverse the inhibition of osteogenic differentiation of BMSCs in vitro, suggesting that melatonin can antagonize TNF-α-induced ROS generation and promote the great effect of osteogenic differentiation of BMSCs. Accordingly, these findings provide more evidence that melatonin can be used as a candidate drug for the treatment of osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document