scholarly journals Cardiac Disorder Classification by Electrocardiogram Sensing Using Deep Neural Network

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Haider Khan ◽  
Muzammil Hussain ◽  
Muhammad Kamran Malik

Cardiac disease is the leading cause of death worldwide. Cardiovascular diseases can be prevented if an effective diagnostic is made at the initial stages. The ECG test is referred to as the diagnostic assistant tool for screening of cardiac disorder. The research purposes of a cardiac disorder detection system from 12-lead-based ECG Images. The healthcare institutes used various ECG equipment that present results in nonuniform formats of ECG images. The research study proposes a generalized methodology to process all formats of ECG. Single Shoot Detection (SSD) MobileNet v2-based Deep Neural Network architecture was used to detect cardiovascular disease detection. The study focused on detecting the four major cardiac abnormalities (i.e., myocardial infarction, abnormal heartbeat, previous history of MI, and normal class) with 98% accuracy results were calculated. The work is relatively rare based on their dataset; a collection of 11,148 standard 12-lead-based ECG images used in this study were manually collected from health care institutes and annotated by the domain experts. The study achieved high accuracy results to differentiate and detect four major cardiac abnormalities. Several cardiologists manually verified the proposed system’s accuracy result and recommended that the proposed system can be used to screen for a cardiac disorder.

2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


2021 ◽  
Vol 11 (15) ◽  
pp. 7050
Author(s):  
Zeeshan Ahmad ◽  
Adnan Shahid Khan ◽  
Kashif Nisar ◽  
Iram Haider ◽  
Rosilah Hassan ◽  
...  

The revolutionary idea of the internet of things (IoT) architecture has gained enormous popularity over the last decade, resulting in an exponential growth in the IoT networks, connected devices, and the data processed therein. Since IoT devices generate and exchange sensitive data over the traditional internet, security has become a prime concern due to the generation of zero-day cyberattacks. A network-based intrusion detection system (NIDS) can provide the much-needed efficient security solution to the IoT network by protecting the network entry points through constant network traffic monitoring. Recent NIDS have a high false alarm rate (FAR) in detecting the anomalies, including the novel and zero-day anomalies. This paper proposes an efficient anomaly detection mechanism using mutual information (MI), considering a deep neural network (DNN) for an IoT network. A comparative analysis of different deep-learning models such as DNN, Convolutional Neural Network, Recurrent Neural Network, and its different variants, such as Gated Recurrent Unit and Long Short-term Memory is performed considering the IoT-Botnet 2020 dataset. Experimental results show the improvement of 0.57–2.6% in terms of the model’s accuracy, while at the same time reducing the FAR by 0.23–7.98% to show the effectiveness of the DNN-based NIDS model compared to the well-known deep learning models. It was also observed that using only the 16–35 best numerical features selected using MI instead of 80 features of the dataset result in almost negligible degradation in the model’s performance but helped in decreasing the overall model’s complexity. In addition, the overall accuracy of the DL-based models is further improved by almost 0.99–3.45% in terms of the detection accuracy considering only the top five categorical and numerical features.


2020 ◽  
pp. 104-117
Author(s):  
O.S. Amosov ◽  
◽  
S.G. Amosova ◽  
D.S. Magola ◽  
◽  
...  

The task of multiclass network classification of computer attacks is given. The applicability of deep neural network technology in problem solving has been considered. Deep neural network architecture was chosen based on the strategy of combining a set of convolution and recurrence LSTM layers. Op-timization of neural network parameters based on genetic algorithm is proposed. The presented results of modeling show the possibility of solving the network classification problem in real time.


2021 ◽  
Vol 15 (1) ◽  
pp. 81-92
Author(s):  
Linyang Yan ◽  
Sun-Woo Ko

Introduction: Traffic accidents are easy to occur in the tunnel due to its special environment, and the consequences are very serious. The existing vehicle accident detection system and CCTV system have the issues of low detection rate. Methods: A method of using Mel Frequency Cepstrum Coefficient (MFCC) to extract sound features and using a deep neural network (DNN) to learn sound features is proposed to distinguish accident sound from the non-accident sound. Results and Discussion: The experimental results show that the method can effectively classify accident sound and non-accident sound, and the recall rate can reach more than 78% by setting appropriate neural network parameters. Conclusion: The method proposed in this research can be used to detect tunnel accidents and consequently, accidents can be detected in time and avoid greater disasters.


Sign in / Sign up

Export Citation Format

Share Document