Cafeteria Diet-Induced Metabolic and Cardiovascular Changes in Rats: The Role of Piper nigrum Leaf Extract
Background. Cafeteria diet is known to induce excessive body fat accumulation (obesity) that could cause metabolic and cardiovascular changes and even death. The increase in prevalence over time and the failure in treatment options make obesity a real public health problem. The present study assessed the preventive effect of the hydro-ethanolic extract of the Piper nigrum leaf on the development of metabolic and cardiovascular changes in cafeteria diet fed Wistar rats. Methods. Thirty-six male rats were divided into 5 groups of 6 rats each: a normal control group (Nor.), a negative control group (Neg.), two groups administered different doses of extract in mg/kg (E250 and E500), and a group administered atorvastatin 10 mg/kg (Ator., reference drug). The animals were fed with experimental diets (standard and cafeteria) for a period of 5 weeks. Food and water intake were assessed daily, and the body weight assessed weekly. At the end of the feeding, plasma lipid profile and markers of hepatic and renal function were assessed. Furthermore, the relative weights of the adipose tissue and the organs were assessed. The liver, kidneys, and heart homogenates were assessed for markers of oxidative stress while the aorta was histopathologically examined. Results. Cafeteria diet-induced weight gain of 30% and increased triglyceride, total cholesterol, and low-density lipoprotein cholesterol level of more than 50%. Equally, an increase in the relative weight of accumulated adipose tissues of more than 90%, oxidative stress, and alteration in the organ structure were visible in cafeteria diet fed rats (Neg). Treatment with P. nigrum extract significantly prevented weight gain, dyslipidemia, oxidative stress, and alteration in the architecture of the aorta. The effect of P. nigrum extract was comparable to that of the reference drug. Conclusion. Piper nigrum leaf may prevent weight gain and possess cardioprotective activity with a strong antioxidant activity.