scholarly journals Monopulse Feature Extraction and Fault Diagnosis Method of Rolling Bearing under Low-Speed and Heavy-Load Conditions

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Chang Liu ◽  
Gang Cheng ◽  
Xihui Chen ◽  
Yong Li

According to the rolling bearing local fault vibration mechanism, a monopulse feature extraction and fault diagnosis method of rolling bearing under low-speed and heavy-load conditions based on phase scan and CNN is proposed. The synchronous collected speed signal is used to calculate bearing phase function and divide fault monopulse periods. The monopulse waveforms of multiple fault periods are scanned and ensemble averaged to suppress noise interference and detail feature loss at the same time of feature extraction. By iteratively calibrating phase function, the feature matrix containing bearing fault information can be obtained. Finally, CNN is used to recognize and classify different bearing states. The experimental and analysis results show that bearing fault diagnosis can be achieved. The total recognition rates of constant and variable speed samples are 99.67% and 99.89%, respectively. The trained network has fast convergence speed and good generalization ability for different fault sizes and working conditions. Further experiments show that the method can also accurately identify different bearing degradation states. The total recognition rates of constant and variable speed samples are 96.67% and 95.56%, respectively. The limited errors are concentrated between the degradation states with the same type weak fault. The experimental results using Case Western Reserve University bearing data show that feature extraction and network training are better, and the recognition rates of 5 bearing states are all 100%. Therefore, the proposed method is an effective rolling bearing feature extraction and fault diagnosis technology.

2021 ◽  
Vol 1792 (1) ◽  
pp. 012035
Author(s):  
Xingtong Zhu ◽  
Zhiling Huang ◽  
Jinfeng Chen ◽  
Junhao Lu

Author(s):  
Jianqun Zhang ◽  
Qing Zhang ◽  
Xianrong Qin ◽  
Yuantao Sun

To identify rolling bearing faults under variable load conditions, a method named DISA-KNN is proposed in this paper, which is based on the strategy of feature extraction-domain adaptation-classification. To be specific, the time-domain and frequency-domain indicators are used for feature extraction. Discriminative and domain invariant subspace alignment (DISA) is used to minimize the data distributions’ discrepancies between the training data (source domain) and testing data (target domain). K-nearest neighbor (KNN) is applied to identify rolling bearing faults. DISA-KNN’s validation is proved by the experimental signal collected under different load conditions. The identification accuracies obtained by the DISA-KNN method are more than 90% on four datasets, including one dataset with 99.5% accuracy. The strength of the proposed method is further highlighted by comparisons with the other 8 methods. These results reveal that the proposed method is promising for the rolling bearing fault diagnosis in real rotating machinery.


Author(s):  
Ying Zhang ◽  
Hongfu Zuo ◽  
Fang Bai

There are mainly two problems with the current feature extraction methods used in the electrostatic monitoring of rolling bearings, which affect their abilities to identify early faults: (1) since noises are mixed in the electrostatic signals, it is difficult to extract weak early fault features; (2) traditional time and frequency domain features have limited ability to provide a quantitative indicator of degradation state. With regard to these two problems, a new feature extraction method for rolling bearing fault diagnosis by electrostatic monitoring sensors is proposed in this paper. First, the spectrum interpolation is adopted to suppress the power-frequency interference in the electrostatic signal. Then the resultant signal is used to construct Hankel matrix, the number of useful components is automatically selected based on the difference spectrum of singular values, after that the signal is reconstructed to remove background noises and random pulses. Finally, the permutation entropy of the denoised signal is calculated and smoothed using the exponential weighted moving average method, which is used to be a quantitative indicator of bearing performance state. The simulation and experimental results show that the proposed method can effectively remove noises and significantly bring forward the time when early faults are detected.


2021 ◽  
Author(s):  
Hao DeChen ◽  
HuaLing Li ◽  
JinYing Huang

Abstract Rotating machinery (RM) is one of the most common mechanical equipment in engineering applications and has a broad and vital role. Rotating machinery includes gearboxes, bearing motors, generators, etc. In industrial production, the important position of rotating machinery and its variable speed and complex working conditions lead to unstable vibration characteristics, which have become a research hotspot in mechanical fault diagnosis. Aiming at the multi-classification problem of rotating machinery with variable speed and complex working conditions, this paper proposes a fault diagnosis method based on the construction of improved sensitive mode matrix (ISMM), isometric mapping (ISOMAP) and Convolution-Vision Transformer network (CvT) structure. After overlapping and sampling the variable speed signals, a high-dimensional ISMM is constructed, and the ISMM is mapped into the manifold space through ISOMAP manifold learning. This method can extract the fault transient characteristics of the variable speed signal, and the experiment proves that it can solve the problem that the conventional method cannot effectively extract the characteristics of the variable speed data. CvT combines the advantages of self-attention mechanism and convolution in CNN, so the CvT network structure is used for feature extraction and fault recognition and classification. The CvT network structure takes into account both global feature extraction and local feature extraction, which greatly reduces the number of training iterations and the size of the network model. Two data sets (the HFXZ-I planetary gearbox variable speed data set in the laboratory and the bearing variable speed public data set of the University of Ottawa in Canada) are used to experimentally verify the proposed fault diagnosis model. Experimental results show that the proposed fault diagnosis model has good recognition accuracy and robustness.


2019 ◽  
Vol 6 (2) ◽  
pp. 181488 ◽  
Author(s):  
Jingchao Li ◽  
Yulong Ying ◽  
Yuan Ren ◽  
Siyu Xu ◽  
Dongyuan Bi ◽  
...  

Rolling bearing failure is the main cause of failure of rotating machinery, and leads to huge economic losses. The demand of the technique on rolling bearing fault diagnosis in industrial applications is increasing. With the development of artificial intelligence, the procedure of rolling bearing fault diagnosis is more and more treated as a procedure of pattern recognition, and its effectiveness and reliability mainly depend on the selection of dominant characteristic vector of the fault features. In this paper, a novel diagnostic framework for rolling bearing faults based on multi-dimensional feature extraction and evidence fusion theory is proposed to fulfil the requirements for effective assessment of different fault types and severities with real-time computational performance. Firstly, a multi-dimensional feature extraction strategy on the basis of entropy characteristics, Holder coefficient characteristics and improved generalized box-counting dimension characteristics is executed for extracting health status feature vectors from vibration signals. And, secondly, a grey relation algorithm is used to calculate the basic belief assignments (BBAs) using the extracted feature vectors, and lastly, the BBAs are fused through the Yager algorithm for achieving bearing fault pattern recognition. The related experimental study has illustrated the proposed method can effectively and efficiently recognize various fault types and severities in comparison with the existing intelligent diagnostic methods based on a small number of training samples with good real-time performance, and may be used for online assessment.


2012 ◽  
Vol 190-191 ◽  
pp. 993-997
Author(s):  
Li Jie Sun ◽  
Li Zhang ◽  
Yong Bo Yang ◽  
Da Bo Zhang ◽  
Li Chun Wu

Mechanical equipment fault diagnosis occupies an important position in the industrial production, and feature extraction plays an important role in fault diagnosis. This paper analyzes various methods of feature extraction in rolling bearing fault diagnosis and classifies them into two big categories, which are methods of depending on empirical rules and experimental trials and using objective methods for screening. The former includes five methods: frequency as the characteristic parameters, multi-sensor information fusion method, rough set attribute reduction method, "zoom" method and vibration signal as the characteristic parameters. The latter includes two methods: sensitivity extraction and data mining methods to select attributes. Currently, selection methods of feature parameters depend heavily on empirical rules and experimental trials, thus extraction results are be subjected to restriction from subjective level, feature extraction in the future will develop toward objective screening direction.


Sign in / Sign up

Export Citation Format

Share Document