Monopulse Feature Extraction and Fault Diagnosis Method of Rolling Bearing under Low-Speed and Heavy-Load Conditions
According to the rolling bearing local fault vibration mechanism, a monopulse feature extraction and fault diagnosis method of rolling bearing under low-speed and heavy-load conditions based on phase scan and CNN is proposed. The synchronous collected speed signal is used to calculate bearing phase function and divide fault monopulse periods. The monopulse waveforms of multiple fault periods are scanned and ensemble averaged to suppress noise interference and detail feature loss at the same time of feature extraction. By iteratively calibrating phase function, the feature matrix containing bearing fault information can be obtained. Finally, CNN is used to recognize and classify different bearing states. The experimental and analysis results show that bearing fault diagnosis can be achieved. The total recognition rates of constant and variable speed samples are 99.67% and 99.89%, respectively. The trained network has fast convergence speed and good generalization ability for different fault sizes and working conditions. Further experiments show that the method can also accurately identify different bearing degradation states. The total recognition rates of constant and variable speed samples are 96.67% and 95.56%, respectively. The limited errors are concentrated between the degradation states with the same type weak fault. The experimental results using Case Western Reserve University bearing data show that feature extraction and network training are better, and the recognition rates of 5 bearing states are all 100%. Therefore, the proposed method is an effective rolling bearing feature extraction and fault diagnosis technology.