scholarly journals Application of Reinforcement Learning Algorithm in Delivery Order System under Supply Chain Environment

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Haozhe Huang ◽  
Xin Tan

With the intensification of market competition and the development of market globalization, the efficiency of supply chain management orders has become an important part of enterprise competition resources. The competition among enterprises is fierce. To achieve effective customer response quickly, the time for supply chain order management is minimized, and refine the order processing process. This article introduces the strategy research of supply chain management order based on a reinforcement learning algorithm. This article first combines the reinforcement learning algorithm and deep learning algorithm, using the optimal decision-making ability of reinforcement learning algorithm and deep learning algorithm. The combination of data perception and the optimal ability to analyze examine the data of the order process, order cycle, and order delivery process of the supply chain order management and give the optimal decision. The supply chain order management process conducts questionnaire surveys and seminars to understand the current process of supply chain order management and the problems derived from the analysis of data based on the deep learning algorithm. Finally, through the output of the optimal strategy of the reinforcement learning algorithm, the supply chain order management process was improved, and the satisfaction survey was conducted again. The survey showed that the satisfaction was improved, and the satisfaction reached more than 90%.

2021 ◽  
Vol 2138 (1) ◽  
pp. 012011
Author(s):  
Yanwei Zhao ◽  
Yinong Zhang ◽  
Shuying Wang

Abstract Path planning refers to that the mobile robot can obtain the surrounding environment information and its own state information through the sensor carried by itself, which can avoid obstacles and move towards the target point. Deep reinforcement learning consists of two parts: reinforcement learning and deep learning, mainly used to deal with perception and decision-making problems, has become an important research branch in the field of artificial intelligence. This paper first introduces the basic knowledge of deep learning and reinforcement learning. Then, the research status of deep reinforcement learning algorithm based on value function and strategy gradient in path planning is described, and the application research of deep reinforcement learning in computer game, video game and autonomous navigation is described. Finally, I made a brief summary and outlook on the algorithms and applications of deep reinforcement learning.


Machine learning area enable the utilization of Deep learning algorithm and neural networks (DNNs) with Reinforcement Learning. Reinforcement learning and DL both is region of AI, it’s an efficient tool towards structuring artificially intelligent systems and solving sequential deciding problems. Reinforcement learning (RL) deals with the history of moves; Reinforcement learning problems are often resolve by an agent often denoted as (A) it has privilege to make decisions during a situation to optimize a given problem by collective rewards. Ability to structure sizable amount of attributes make deep learning an efficient tool for unstructured data. Comparing multiple deep learning algorithms may be a major issue thanks to the character of the training process and therefore the narrow scope of datasets tested in algorithmic prisons. Our research proposed a framework which exposed that reinforcement learning techniques in combination with Deep learning techniques learn functional representations for sorting problems with high dimensional unprocessed data. The faster RCNN model typically founds objects in faster way saving resources like computation, processing, and storage. But still object detection technique typically require high computation power and large memory and processor building it hard to run on resource constrained devices (RCD) for detecting an object during real time without an efficient and high computing machine.


Sign in / Sign up

Export Citation Format

Share Document