scholarly journals Interval Intuitionistic Fuzzy Decision Model with Abnormal Information and Its Application in Talent Selection

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xueer Ji ◽  
Lei Wang ◽  
Huifeng Xue

In some complex decision-making problems such as talent selection, experts often hesitate between multiple evaluation values during their decision making and can only give a range of information due to the fuzziness and imprecision of qualitative decision-making attributes. Interval intuitionistic fuzzy sets and their decision-making methods provide a useful tool to describe the fuzziness of decision attributes and decision experts’ hesitation. However, the abnormal information in the expert decision information has not been considered in the previous works; that is, some interval intuitionistic fuzzy numbers exceed the defined interval range. This kind of abnormal decision information often makes it difficult to obtain accurate decision results using the decision model. To avoid the abnormal information influence on decision-making results, the hesitancy degree-based interval intuitionistic fuzzy sets are employed to propose an adaptive correction method of abnormal information, which can correct the abnormal decision information without changing the decision preference of experts. The abnormal information correction method is utilized to construct a new interval intuitionistic fuzzy entropy by combining hesitancy and fuzziness. This provides a multiattribute decision-making method, including abnormal decision information. Finally, the effectiveness and superiority of the proposed method and decision-making model are evaluated using an application case study of talent selection.

Author(s):  
John P. Robinson ◽  
Henry E.C. Amirtharaj

This paper extends the technique for order preference by similarity to ideal solution (TOPSIS) for solving multi-attribute group decision making (MAGDM) problems under triangular intuitionistic fuzzy sets by using its correlation coefficient. In situations where the information or the data is of the form of triangular intuitionistic fuzzy numbers (TIFNs), some arithmetic aggregation operators have to be defined, namely the triangular intuitionistic fuzzy ordered weighted averaging (TIFOWA) operator and the triangular intuitionistic fuzzy hybrid aggregation (TIFHA) operator. An extended TOPSIS model is developed to solve the MAGDM problems using a new type of correlation coefficient defined for TIFNs based on the triangular intuitionistic fuzzy weighted arithmetic averaging (TIFWAA) operator and the TIFHA operator. With an illustration this proposed model of MAGDM with the correlation coefficient of TIFNs is compared with the other existing methods.


2020 ◽  
Vol 20 (1) ◽  
pp. 3-20 ◽  
Author(s):  
Surender Singh ◽  
Sumita Lalotra ◽  
Abdul Haseeb Ganie

AbstractTo overcome the certain limitations of Intuitionistic Fuzzy Sets (IFSs), the notion of Intuitionistic Fuzzy Sets of Second Type (IFSST) was introduced. IFSST is a modified version of IFS for handling some problems in a reasonable manner. Type two Intuitionistic Fuzzy entropy (IFSST-entropy) measures the amount of ambiguity/uncertainty present in an IFSST. In the present paper, we introduce the concept of dual measure of IFSST-entropy, i.e., IFSST-knowledge measure. We develop some IFSST-knowledge measures and prove some of their properties. We also show the superiority of the proposed IFSST-knowledge measures through comparative study. Further, we demonstrate the application of the proposed knowledge measures in Multi-Criteria Decision-Making (MCDM).


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1382 ◽  
Author(s):  
Shahzad Faizi ◽  
Wojciech Sałabun ◽  
Tabasam Rashid ◽  
Sohail Zafar ◽  
Jarosław Wątróbski

Over the past few decades, several researchers and professionals have focused on the development and application of multi-criteria group decision making (MCGDM) methods under a fuzzy environment in different areas and disciplines. This complex research area has become one of the more popular topics, and it seems that this trend will be increasing. In this paper, we propose a new MCGDM approach combining intuitionistic fuzzy sets (IFSs) and the Characteristic Object Method (COMET) for solving the group decision making (GDM) problems. The COMET method is resistant to the rank reversal phenomenon, and at the same time it remains relatively simple and intuitive in practical problems. This method can be used for both symmetric and asymmetric information. The Triangular Intuitionistic Fuzzy Numbers (TIFNs) have been used to handle uncertain data. This concept can ensure the preference information about an alternative under specific criteria more comprehensively and allows for easy modelling of symmetrical or asymmetrical linguistic values. Each expert provides the membership and non-membership degree values of intuitionistic fuzzy numbers (IFNs). So this approach deals with a different kind of uncertainty than with hesitant fuzzy sets (HFSs). The proposed combination of COMET and IFSs required an adaptation of the matrix of expert judgment (MEJ) and allowed to capture the behaviour aspects of the decision makers (DMs). Therefore, we get more reliable solutions while solving MCGDM problems. Finally, the proposed method is presented in a simple academic example.


Mathematics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 93
Author(s):  
Marcelo Loor ◽  
Ana Tapia-Rosero ◽  
Guy De Tré

A flexible attribute-set group decision-making (FAST-GDM) problem consists in finding the most suitable option(s) out of the options under consideration, with a general agreement among a heterogeneous group of experts who can focus on different attributes to evaluate those options. An open challenge in FAST-GDM problems is to design consensus reaching processes (CRPs) by which the participants can perform evaluations with a high level of consensus. To address this challenge, a novel algorithm for reaching consensus is proposed in this paper. By means of the algorithm, called FAST-CR-XMIS, a participant can reconsider his/her evaluations after studying the most influential samples that have been shared by others through contextualized evaluations. Since exchanging those samples may make participants’ understandings more like each other, an increase of the level of consensus is expected. A simulation of a CRP where contextualized evaluations of newswire stories are characterized as augmented intuitionistic fuzzy sets (AIFS) shows how FAST-CR-XMIS can increase the level of consensus among the participants during the CRP.


2021 ◽  
pp. 1-22
Author(s):  
Riaz Ali ◽  
Saleem Abdullah ◽  
Shakoor Muhammad ◽  
Muhammad Naeem ◽  
Ronnason Chinram

Due to the indeterminacy and uncertainty of the decision-makers (DM) in the complex decision making problems of daily life, evaluation and aggregation of the information usually becomes a complicated task. In literature many theories and fuzzy sets (FS) are presented for the evaluation of these decision tasks, but most of these theories and fuzzy sets have failed to explain the uncertainty and vagueness in the decision making issues. Therefore, we use complex intuitionistic fuzzy set (CIFS) instead of fuzzy set and intuitionistic fuzzy set (IFS). A new type of aggregation operation is also developed by the use of complex intuitionistic fuzzy numbers (CIFNs), their accuracy and the score functions are also discussed in detail. Moreover, we utilized the Maclaurin symmetric mean (MSM) operator, which have the ability to capture the relationship among multi-input arguments, as a result, CIF Maclarurin symmetric mean (CIFMSM) operator and CIF dual Maclaurin symmetric mean (CIFDMSM) operator are presented and their characteristics are discussed in detail. On the basis of these operators, a MAGDM method is presented for the solution of group decision making problems. Finally, the validation of the propounded approach is proved by evaluating a numerical example, and by the comparison with the previously researched results.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1485
Author(s):  
Pavel Sevastjanov ◽  
Ludmila Dymova ◽  
Krzysztof Kaczmarek

In this short paper, a critical analysis of the Neutrosophic, Pythagorean and some other novel fuzzy sets theories foundations is provided, taking into account that they actively used for the solution of the decision-making problems. The shortcomings of these theories are exposed. It is stated that the independence hypothesis, which is a cornerstone of the Neutrosophic sets theory, is not in line with common sense and therefore leads to the paradoxical results in the asymptotic limits of this theory. It is shown that the Pythagorean sets theory possesses questionable foundations, the sense of which cannot be explained reasonably. Moreover, this theory does not completely solve the declared problem. Similarly, important methodological problems of other analyzed theories are revealed. To solve the interior problems of the Atanassov’s intuitionistic fuzzy sets and to improve upon them, this being the reason most of the criticized novel sets theories were developed, an alternative approach based on extension of the intuitionistic fuzzy sets in the framework of the Dempster–Shafer theory is proposed. No propositions concerned with the improvement of the Cubic sets theory and Single-Valued Neutrosophic Offset theory were made, as their applicability was shown to be very dubious. In order to stimulate discussion, many statements are deliberately formulated in a hardline form.


Sign in / Sign up

Export Citation Format

Share Document