scholarly journals Lower Limb Joint Nursing and Rehabilitation System Based on Intelligent Medical Treatment

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tianjun Geng ◽  
Xiaoqian Jia ◽  
Yanli Guo

With the aggravation of the problem of aging population, all kinds of lower limb paralysis caused by various diseases occur frequently. People’s demand for lower limb nursing and rehabilitation treatment is growing. In this paper, combined with intelligent medical technology and lower limb kinematics model, this paper proposes to build a lower limb joint nursing and rehabilitation system based on intelligent medical treatment. It is expected that, through the following limb joint rehabilitation robot as the main rehabilitation means, a smart nursing rehabilitation system which can quickly respond to users and realize remote rehabilitation nursing can be designed. First of all, it is clear that the main body of the lower limb joint rehabilitation system consists of the robot body and the state display system. Then, the sensor, amplifier, and data acquisition card are set in the data acquisition system, and the plantar balance force is detected using a FlexiForce film pressure sensor. The final control system mainly includes the main control module program and the lower limb action recognition program. The motor control software adopts PID regulation method, and the lower limb action recognition adopts SVM one-to-one classification method. After the construction of lower limb joint nursing and rehabilitation system, the accuracy rate of action recognition and classification was tested. In the third experiment, the accuracy of all the movements was 100%. Then, the joint displacement and angle changes of the experimenter assisted by the system were analyzed. The experimenter’s knee joint and hip joint show a normal walking state, and the joint angle changes tend to be normal. Ten out of 55 rehabilitation system users were randomly selected for interview survey. The total scores of operation convenience, wearing comfort, intensity suitability, and movement science of the system were 90, 83, 84, and 91, respectively. This shows that the rehabilitation action designed by the system is scientific and easy to operate and can be put into use in rehabilitation training after improving the wearing comfort.

Biomechanics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 190-201
Author(s):  
Pathmanathan Cinthuja ◽  
Graham Arnold ◽  
Rami J. Abboud ◽  
Weijie Wang

There is a lack of evidence about the ways in which balance ability influences the kinematic and kinetic parameters and muscle activities during gait among healthy individuals. The hypothesis is that balance ability would be associated with the lower limb kinematics, kinetics and muscle activities during gait. Twenty-nine healthy volunteers (Age 32.8 ± 9.1; 18 males and 11 females) performed a Star Excursion Balance test to measure their dynamic balance and walked for at least three trials in order to obtain a good quality of data. A Vicon® 3D motion capture system and AMTI® force plates were used for the collection of the movement data. The selected muscle activities were recorded using Delsys® Electromyography (EMG). The EMG activities were compared using the maximum values and root mean squared (RMS) values within the participants. The joint angle, moment, force and power were calculated using a Vicon Plug-in-Gait model. Descriptive analysis, correlation analysis and multivariate linear regression analysis were performed using SPSS version 23. In the muscle activities, positive linear correlations were found between the walking and balance test in all muscles, e.g., in the multifidus (RMS) (r = 0.800 p < 0.0001), vastus lateralis (RMS) (r = 0.639, p < 0.0001) and tibialis anterior (RMS) (r = 0.539, p < 0.0001). The regression analysis models showed that there was a strong association between balance ability (i.e., reaching distance) and the lower limb muscle activities (i.e., vastus medialis–RMS) (R = 0.885, p < 0.0001), and also between balance ability (i.e., reaching distance) and the lower limb kinematics and kinetics during gait (R = 0.906, p < 0.0001). In conclusion, the results showed that vastus medialis (RMS) muscle activity mainly contributes to balance ability, and that balance ability influences the lower limb kinetics and kinematics during gait.


2021 ◽  
Vol 8 (4) ◽  
pp. 47
Author(s):  
Micaela Porta ◽  
Massimiliano Pau ◽  
Bruno Leban ◽  
Michela Deidda ◽  
Marco Sorrentino ◽  
...  

Among the functional limitations associated with hip osteoarthritis (OA), the alteration of gait capabilities represents one of the most invalidating as it may seriously compromise the quality of life of the affected individual. The use of quantitative techniques for human movement analysis has been found valuable in providing accurate and objective measures of kinematics and kinetics of gait in individuals with hip OA, but few studies have reported in-depth analyses of lower limb joint kinematics during gait and, in particular, there is a scarcity of data on interlimb symmetry. Such aspects were investigated in the present study which tested 11 individuals with hip OA (mean age 68.3 years) and 11 healthy controls age- and sex-matched, using 3D computerized gait analysis to perform point-by-point comparisons of the joint angle trends of hip, knee, and ankle. Angle-angle diagrams (cyclograms) were also built to compute several parameters (i.e., cyclogram area and orientation and Trend Symmetry) from which to assess the degree of interlimb symmetry. The results show that individuals with hip OA exhibit peculiar gait patterns characterized by severe modifications of the physiologic trend at hip level even in the unaffected limb (especially during the stance phase), as well as minor (although significant) alterations at knee and ankle level. The symmetry analysis also revealed that the effect of the disease in terms of interlimb coordination is present at knee joint as well as hip, while the ankle joint appears relatively preserved from specific negative effects from this point of view. The availability of data on such kinematic adaptations may be useful in supporting the design of specific rehabilitative strategies during both preoperative and postoperative periods.


2021 ◽  
Vol 14 (6) ◽  
pp. e240666
Author(s):  
Alvin Oliver Payus ◽  
Sat Lin Liew ◽  
Nee Tiong ◽  
Norlaila Mustafa

Hypokalaemic periodic paralysis secondary to subclinical hyperthyroidism is an uncommon clinical phenomenon characterised by lower limb paralysis secondary to hypokalaemia in the background of subclinical hyperthyroidism. In this article, we report a patient who presented with progressive lower limb muscle weakness secondary to hypokalaemia that was refractory to potassium replacement therapy. He has no diarrhoea, no reduced appetite and was not taking any medication that can cause potassium wasting. Although he was clinically euthyroid, his thyroid function test revealed subclinical hyperthyroidism. His 24-hour urine potassium level was normal, which makes a rapid transcellular shift of potassium secondary to subclinical hyperthyroidism as the possible cause. He was successfully treated with potassium supplements, non-selective beta-blockers and anti-thyroid medication. This case report aimed to share an uncommon case of hypokalaemic periodic paralysis secondary to subclinical hyperthyroidism, which to our knowledge, only a few has been reported in the literature.


2021 ◽  
pp. 1-9
Author(s):  
James R. Forsyth ◽  
Christopher J. Richards ◽  
Ming-Chang Tsai ◽  
John W. Whitting ◽  
Diane L. Riddiford-Harland ◽  
...  

2012 ◽  
Vol 15 (2) ◽  
pp. 169-174 ◽  
Author(s):  
Mark G.L. Sayers ◽  
Amanda L. Tweddle ◽  
Joshua Every ◽  
Aaron Wiegand

2013 ◽  
Vol 416-417 ◽  
pp. 530-535
Author(s):  
Jian Xun Jin ◽  
Wei Xu ◽  
Yan Chen ◽  
You Guang Guo ◽  
Jian Guo Zhu

A novel control platform for the permanent magnet linear synchronous motor (PMLSM) drive system has been built up based on virtual instrument (VI) and relavant data acquisition card (DAQ) devices. In the traditional control platform, it mostly depends on digital signal processor (DSP), which needs a lot of time to further develop the interface between the personal computer (PC) and operators, and its computational capability is not strong than computer. To overcome these shortages, a novel control platform is presented on the base of one PC, one LabVIEW, and one multifunctional data acquisition card. Firstly, a space vector pulse width modulation (SVPWM) signal source is executed in the VI. Then in order to improve the precision of control system, the field oriented control (FOC) is proposed for the PMLSM. Finally comprehensive experiments verify with relative simulations.


2012 ◽  
Vol 229-231 ◽  
pp. 1543-1546
Author(s):  
Xiao Bo Zhou ◽  
Min Xia ◽  
Hai Long Cheng

To improve data transmission performance of the data acquisition card, a design of high-speed data transmission system is proposed in the thesis. Using FPGA of programmable logic devices, adopting Verilog HDL of hardware description language, the design of modularization and DMA transmission method is implemented in FPGA. Eventually the design implements the data transmission with high-speed through PCI Express interface. Through simulation and verification based on hardware system, this design is proved to be feasible and can satisfy the performance requirements of data transmission in the high-speed data acquisition card applied in high-speed railway communication. The design also has some value of application and reference for a universal data acquisition card.


Sign in / Sign up

Export Citation Format

Share Document