scholarly journals Numerical Study on the Mechanical Properties of Transmission Tower K-Joints under Cyclic Loading

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jia-xiang Li ◽  
Chao Zhang ◽  
Shu-hong Wang ◽  
Sheng-qiang Yin

During the vibration of a transmission tower, the joints will be subjected to a reciprocating load. To obtain the accurate state of the transmission tower under the load, the mechanical properties of the joints under the vibration load must be considered. In this paper, the mechanical properties of typical K-joints in transmission tower structures are studied by numerical simulation. The failure mode of the K-joint under cyclic loading is also analyzed. The mechanical properties of the K-joint are discussed from the aspects of hysteretic characteristics, stiffness degradation, energy dissipation capacity, and ductility evaluation, and the influencing factors are discussed. The results show that the failure mode of the K-joint is related to the bolt grade and steel strength. When analyzing K-joints, the moment-rotation hysteresis curve should be combined with the realistic parameters of joints to consider the hysteretic behavior of the K-joint. The results provide a theoretical reference for the accurate modeling of transmission towers.

2019 ◽  
Vol 19 (05) ◽  
pp. 1950041
Author(s):  
ABDELWAHED BARKAOUI ◽  
RABEB BEN KAHLA ◽  
TAREK MERZOUKI ◽  
RIDHA HAMBLI

Bone remodeling is a physiological phenomenon coupling resorption and formation processes that are mainly mediated by osteoclasts and osteoblasts, in response to mechanical stimuli transduced by osteocytes to biochemical signals activating the bone multicellular unit. Under normal loading conditions, bone resorption and formation are balanced by a homeostasis process. When bone is subjected to overstress, microdamaging occurs, which induces a modification of the structural integrity and microarchitecture. This has drawn significant attention to the mechanical properties of bone. In this context, the current study has been carried out with the aim of numerically investigating the impact of the mechanical properties on the remodeling process of the trabecular bone under cyclic loading, highlighting the effects of different values of the mineral density and the Young’s modulus. This was performed using a mechanobiological model, coupling mechanical and biological approaches, allowing to numerically simulate the effect of the selected parameters for a 20-year-period of cyclic loading for 2D and 3D models of a human femur head. The current work is an explorative numerical study, and the obtained results revealed the changes in the overall stiffness of the bone according to the mechanical properties.


2021 ◽  
Vol 11 (13) ◽  
pp. 6094
Author(s):  
Hubdar Hussain ◽  
Xiangyu Gao ◽  
Anqi Shi

In this study, detailed finite element analysis was conducted to examine the seismic performance of square and circular hollow steel braces under axial cyclic loading. Finite element models of braces were constructed using ABAQUS finite element analysis (FEA) software and validated with experimental results from previous papers to expand the specimen’s matrix. The influences of cross-section shape, slenderness ratio, and width/diameter-to-thickness ratio on hysteretic behavior and compressive-tensile strength degradation were studied. Simulation results of parametric studies show that both square and circular hollow braces have a better cyclic performance with smaller slenderness and width/diameter-to-thickness ratios, and their compressive-tensile resistances ratio significantly decreases from cycle to cycle after the occurrence of the global buckling of braces.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 779
Author(s):  
Mohamed Gomah ◽  
Guichen Li ◽  
Salah Bader ◽  
Mohamed Elkarmoty ◽  
Mohamed Ismael

The awareness of the impact of high temperatures on rock properties is essential to the design of deep geotechnical applications. The purpose of this research is to assess the influence of heating and cooling treatments on the physical and mechanical properties of Egyptian granodiorite as a degrading factor. The samples were heated to various temperatures (200, 400, 600, and 800 °C) and then cooled at different rates, either slowly cooled in the oven and air or quickly cooled in water. The porosity, water absorption, P-wave velocity, tensile strength, failure mode, and associated microstructural alterations due to thermal effect have been studied. The study revealed that the granodiorite has a slight drop in tensile strength, up to 400 °C, for slow cooling routes and that most of the physical attributes are comparable to natural rock. Despite this, granodiorite thermal deterioration is substantially higher for quick cooling than for slow cooling. Between 400:600 °C is ‘the transitional stage’, where the physical and mechanical characteristics degraded exponentially for all cooling pathways. Independent of the cooling method, the granodiorite showed a ductile failure mode associated with reduced peak tensile strengths. Additionally, the microstructure altered from predominantly intergranular cracking to more trans-granular cracking at 600 °C. The integrity of the granodiorite structure was compromised at 800 °C, the physical parameters deteriorated, and the rock tensile strength was negligible. In this research, the temperatures of 400, 600, and 800 °C were remarked to be typical of three divergent phases of granodiorite mechanical and physical properties evolution. Furthermore, 400 °C could be considered as the threshold limit for Egyptian granodiorite physical and mechanical properties for typical thermal underground applications.


2021 ◽  
Vol 8 (5) ◽  
pp. 70
Author(s):  
Marco Ferroni ◽  
Beatrice Belgio ◽  
Giuseppe M. Peretti ◽  
Alessia Di Giancamillo ◽  
Federica Boschetti

The menisci of the knee are complex fibro-cartilaginous tissues that play important roles in load bearing, shock absorption, joint lubrication, and stabilization. The objective of this study was to evaluate the interaction between the different meniscal tissue components (i.e., the solid matrix constituents and the fluid phase) and the mechanical response according to the developmental stage of the tissue. Menisci derived from partially and fully developed pigs were analyzed. We carried out biochemical analyses to quantify glycosaminoglycan (GAG) and DNA content according to the developmental stage. These values were related to tissue mechanical properties that were measured in vitro by performing compression and tension tests on meniscal specimens. Both compression and tension protocols consisted of multi-ramp stress–relaxation tests comprised of increasing strains followed by stress–relaxation to equilibrium. To better understand the mechanical response to different directions of mechanical stimulus and to relate it to the tissue structural composition and development, we performed numerical simulations that implemented different constitutive models (poro-elasticity, viscoelasticity, transversal isotropy, or combinations of the above) using the commercial software COMSOL Multiphysics. The numerical models also allowed us to determine several mechanical parameters that cannot be directly measured by experimental tests. The results of our investigation showed that the meniscus is a non-linear, anisotropic, non-homogeneous material: mechanical parameters increase with strain, depend on the direction of load, and vary among regions (anterior, central, and posterior). Preliminary numerical results showed the predominant role of the different tissue components depending on the mechanical stimulus. The outcomes of biochemical analyses related to mechanical properties confirmed the findings of the numerical models, suggesting a specific response of meniscal cells to the regional mechanical stimuli in the knee joint. During maturation, the increase in compressive moduli could be explained by cell differentiation from fibroblasts to metabolically active chondrocytes, as indicated by the found increase in GAG/DNA ratio. The changes of tensile mechanical response during development could be related to collagen II accumulation during growth. This study provides new information on the changes of tissue structural components during maturation and the relationship between tissue composition and mechanical response.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750014 ◽  
Author(s):  
Xingguo Li ◽  
Bingbing An ◽  
Dongsheng Zhang

Interfacial behavior in the microstructure and the plastic deformation in the protein matrix influence the overall mechanical properties of biological hard tissues. A cohesive finite element model has been developed to investigate the inelastic mechanical properties of bone-like biocomposites consisting of hard mineral crystals embedded in soft biopolymer matrix. In this study, the complex interaction between plastic dissipation in the matrix and bonding properties of the interface between minerals and matrix is revealed, and the effect of such interaction on the toughening of bone-like biocomposites is identified. For the case of strong and intermediate interfaces, the toughness of biocomposites is controlled by the post yield behavior of biopolymer; the matrix with low strain hardening can undergo significant plastic deformation, thereby promoting enhanced fracture toughness of biocomposites. For the case of weak interfaces, the toughness of biocomposites is governed by the bonding property of the interface, and the post-yield behavior of biopolymer shows negligible effect on the toughness. The findings of this study help to direct the path for designing bioinspired materials with superior mechanical properties.


2014 ◽  
Vol 30 (6) ◽  
pp. 728-731 ◽  
Author(s):  
Yvette L. Kerkum ◽  
Merel-Anne Brehm ◽  
Annemieke I. Buizer ◽  
Josien C. van den Noort ◽  
Jules G. Becher ◽  
...  

A rigid ventral shelf ankle foot orthosis (AFO) may improve gait in children with spastic cerebral palsy (SCP) whose gait is characterized by excessive knee flexion in stance. However, these AFOs can also impede ankle range of motion (ROM) and thereby inhibit push-off power. A more spring-like AFO can enhance push-off and may potentially reduce walking energy cost. The recent development of an adjustable spring-hinged AFO now allows adjustment of AFO stiffness, enabling tuning toward optimal gait performance. This study aims to quantify the mechanical properties of this spring-hinged AFO for each of its springs and settings. Using an AFO stiffness tester, two AFO hinges and their accompanying springs were measured. The springs showed a stiffness range of 0.01−1.82 N·m·deg−1. The moment-threshold increased with increasing stiffness (1.13–12.1 N·m), while ROM decreased (4.91–16.5°). Energy was returned by all springs (11.5–116.3 J). These results suggest that the two stiffest available springs should improve joint kinematics and enhance push-off in children with SCP walking with excessive knee flexion.


Sign in / Sign up

Export Citation Format

Share Document