Measuring Balance Abilities of Transtibial Amputees Using Multiattribute Utility Theory
Background. Berg Balance Scale (BBS) can be considered the standard for assessment of functional balance but has a noted ceiling effect in active transtibial amputees (TTAs). Development of ceiling-free measures based on quantitative measurement techniques that is suitable for patients in any experience levels, yet sensitive enough to capture improvements in any stage of prosthetic rehabilitation, is needed. Research Question. Does a scoring scheme based on Multiattribute Utility (MAU) theory assess balance abilities of multileveled TTAs comparable to BBS? Methods. A case-control study including 28 participants (8 novice TTAs, 10 experienced TTAs, and 10 healthy controls) was conducted. Guided by MAU theory, a novel balance model was developed and initially validated by Spearman correlation between index-generated scores and expert assigned scores, providing preliminary evidence of validity. Floor/ceiling effects were tested, and between-group comparisons of static/dynamic balance were conducted by paired t -test or Wilcoxon signed-rank test depending on data distribution normality. Results. BBS score was correlated with computed balance index ( r = 0.847 , p < 0.001 ). The BBS score of novice/experienced TTAs was 39/54, and the computed balance index was 38/75. A ceiling effect of BBS (30%) was observed in the experienced TTA group, whereas no ceiling effects were found for the computed index in any combination of TTA groups. Group differences between novice and experienced TTAs were observed in center of pressure (COP) ellipse shift area, COP path length, COP average velocity, gait speed, and cadence (all p < 0.05 ). Significance. Evidence from first stage validation of the proposed MAU balance model indicated that the model performed well. This proposed method can monitor the progress of balance for varied experience-leveled TTAs and provide clinicians with useful information for assessing the rehabilitation training.