scholarly journals Characteristic Properties of Type-2 Smarandache Ruled Surfaces According to the Type-2 Bishop Frame in E 3

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ibrahim Al-Dayel ◽  
E. M. Solouma

In this paper, we define and investigate a special kind of ruled surfaces called type-2 Smarandache ruled surfaces related to the type-2 Bishop frame in E 3 . From this point and depending on the type-2 Bishop curvature, we provide the necessary and sufficient conditions that allow these surfaces to be developable in a minimal amount of time. Furthermore, an example is given to clear the results.

2020 ◽  
Vol 19 ◽  

In this paper, we express timelike sweeping surfaces using rotation minimizing frames in Minkowski 3–Space E3 1 . Necessary and sufficient conditions for timelike sweeping surfaces to be developable ruled surfaces are derived. Using these, we analyze the conditions when the resulting timelike developable surface is a cylinder, cone or tangential surface.


2020 ◽  
Vol 5 (1) ◽  
pp. 237-248
Author(s):  
Muhammad Abubakar Isah ◽  
Mihriban Alyamaç Külahçı

AbstractPseudo null curves were studied by some geometers in both Euclidean and Minkowski spaces, but some special characters of the curve are not considered. In this paper, we study weak AW (k) – type and AW (k) – type pseudo null curve in Minkowski 3-space [E_1^3 . We define helix and slant helix according to Bishop frame in [E_1^3 . Furthermore, the necessary and sufficient conditions for the slant helix and helix in Minkowski 3-space are obtained.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Soukaina Ouarab

In this paper, we introduce original definitions of Smarandache ruled surfaces according to Frenet-Serret frame of a curve in E 3 . It concerns TN-Smarandache ruled surface, TB-Smarandache ruled surface, and NB-Smarandache ruled surface. We investigate theorems that give necessary and sufficient conditions for those special ruled surfaces to be developable and minimal. Furthermore, we present examples with illustrations.


2016 ◽  
Vol 13 (05) ◽  
pp. 1650062 ◽  
Author(s):  
Ergi̇n Bayram ◽  
Mustafa Bi̇li̇ci̇

We construct a surface family possessing an involute of a given curve as an asymptotic curve. We express necessary and sufficient conditions for that curve with the above property. We also present natural results for such ruled surfaces. Finally, we illustrate the method with some examples, e.g. circles and helices as given curves.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Soukaina Ouarab

This paper presents a new approach of constructing special ruled surfaces and aims to study their developability and minimalist conditions. Our concept opens opportunities for application in engineering, surface modeling, and architectural design. The principle of our study is to introduce the original definitions of Smarandache ruled surfaces according to Darboux frame of a curve lying on an arbitrary regular surface in E 3 . It concerns T g -Smarandache ruled surface, T n -smarandache ruled surface, and g n -Smarandache ruled surface. New theorems giving necessary and sufficient conditions for those surfaces to be developable and minimal are investigated. Finally, an example with illustrations is presented.


2021 ◽  
Vol 20 ◽  
pp. 235-243
Author(s):  
Rashad A. Abdel-Baky ◽  
Fatemah Mofarreh

For the curve on the regular surface, there is moving frame with this thatis named Darboux frame. Sweeping surfaces through the curve associated with Darboux frame are introduced and their geometrical properties are investigated. Moreover, we obtain the necessary and sufficient conditions of this kind of surfaces to be developable ruled surfaces. Finally, an example to illustrate the application of the results is introduced.


2016 ◽  
Vol 34 (1) ◽  
pp. 187-202 ◽  
Author(s):  
Gulnur Saffak Atalay ◽  
Emin Kasap

In this paper, we analyzed the problem of constructing a family of surfaces from a given some special Smarandache curves in  Euclidean 3-space. Using the Bishop frame of the curve in Euclidean 3-space, we express the family of surfaces as a linear combination of the components of this frame, and derive the necessary and sufficient conditions for coefficients to satisfy both the asymptotic and isoparametric requirements. Finally, examples are given to show the family of surfaces with common Smarandache asymptotic curve.


2020 ◽  
Vol 5 (1) ◽  
pp. 413-424
Author(s):  
Muhammad Abubakar Isah ◽  
Mihriban Alyamaç Külahcı

AbstractNull cartan curves have been studied by some geometers in both Euclidean and Minkowski spaces, but some special characters of the curves are not considered. In this paper, we study weak AW (k) – type and AW (k) – type null cartan curve in Minkowski 3-space E_1^3 . We define helix according to Bishop frame in E_1^3 . Furthermore, the necessary and sufficient conditions for the helices in Minkowski 3-space are obtained.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


Sign in / Sign up

Export Citation Format

Share Document