scholarly journals An Optimized Hybrid Deep Learning Model to Detect COVID-19 Misleading Information

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Bader Alouffi ◽  
Abdullah Alharbi ◽  
Radhya Sahal ◽  
Hager Saleh

Fake news is challenging to detect due to mixing accurate and inaccurate information from reliable and unreliable sources. Social media is a data source that is not trustworthy all the time, especially in the COVID-19 outbreak. During the COVID-19 epidemic, fake news is widely spread. The best way to deal with this is early detection. Accordingly, in this work, we have proposed a hybrid deep learning model that uses convolutional neural network (CNN) and long short-term memory (LSTM) to detect COVID-19 fake news. The proposed model consists of some layers: an embedding layer, a convolutional layer, a pooling layer, an LSTM layer, a flatten layer, a dense layer, and an output layer. For experimental results, three COVID-19 fake news datasets are used to evaluate six machine learning models, two deep learning models, and our proposed model. The machine learning models are DT, KNN, LR, RF, SVM, and NB, while the deep learning models are CNN and LSTM. Also, four matrices are used to validate the results: accuracy, precision, recall, and F1-measure. The conducted experiments show that the proposed model outperforms the six machine learning models and the two deep learning models. Consequently, the proposed system is capable of detecting the fake news of COVID-19 significantly.

2019 ◽  
Author(s):  
Mojtaba Haghighatlari ◽  
Gaurav Vishwakarma ◽  
Mohammad Atif Faiz Afzal ◽  
Johannes Hachmann

<div><div><div><p>We present a multitask, physics-infused deep learning model to accurately and efficiently predict refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds. We show that it outperforms earlier machine learning models by a significant margin, and that incorporating known physics into data-derived models provides valuable guardrails. Using a transfer learning approach, we augment the model to reproduce results consistent with higher-level computational chemistry training data, but with a considerably reduced number of corresponding calculations. Prediction errors of machine learning models are typically smallest for commonly observed target property values, consistent with the distribution of the training data. However, since our goal is to identify candidates with unusually large RI values, we propose a strategy to boost the performance of our model in the remoter areas of the RI distribution: We bias the model with respect to the under-represented classes of molecules that have values in the high-RI regime. By adopting a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates. We confirm that the models developed in this study can reliably predict the RIs of the top 1,000 compounds, and are thus able to capture their ranking. We believe that this is the first study to develop a data-derived model that ensures the reliability of RI predictions by model augmentation in the extrapolation region on such a large scale. These results underscore the tremendous potential of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in accelerating the discovery of new compounds and materials, such as organic molecules with high-RI for applications in opto-electronics.</p></div></div></div>


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1064
Author(s):  
I Nyoman Kusuma Wardana ◽  
Julian W. Gardner ◽  
Suhaib A. Fahmy

Accurate air quality monitoring requires processing of multi-dimensional, multi-location sensor data, which has previously been considered in centralised machine learning models. These are often unsuitable for resource-constrained edge devices. In this article, we address this challenge by: (1) designing a novel hybrid deep learning model for hourly PM2.5 pollutant prediction; (2) optimising the obtained model for edge devices; and (3) examining model performance running on the edge devices in terms of both accuracy and latency. The hybrid deep learning model in this work comprises a 1D Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) to predict hourly PM2.5 concentration. The results show that our proposed model outperforms other deep learning models, evaluated by calculating RMSE and MAE errors. The proposed model was optimised for edge devices, the Raspberry Pi 3 Model B+ (RPi3B+) and Raspberry Pi 4 Model B (RPi4B). This optimised model reduced file size to a quarter of the original, with further size reduction achieved by implementing different post-training quantisation. In total, 8272 hourly samples were continuously fed to the edge device, with the RPi4B executing the model twice as fast as the RPi3B+ in all quantisation modes. Full-integer quantisation produced the lowest execution time, with latencies of 2.19 s and 4.73 s for RPi4B and RPi3B+, respectively.


2021 ◽  
Vol 11 (17) ◽  
pp. 7940
Author(s):  
Mohammed Al-Sarem ◽  
Abdullah Alsaeedi ◽  
Faisal Saeed ◽  
Wadii Boulila ◽  
Omair AmeerBakhsh

Spreading rumors in social media is considered under cybercrimes that affect people, societies, and governments. For instance, some criminals create rumors and send them on the internet, then other people help them to spread it. Spreading rumors can be an example of cyber abuse, where rumors or lies about the victim are posted on the internet to send threatening messages or to share the victim’s personal information. During pandemics, a large amount of rumors spreads on social media very fast, which have dramatic effects on people’s health. Detecting these rumors manually by the authorities is very difficult in these open platforms. Therefore, several researchers conducted studies on utilizing intelligent methods for detecting such rumors. The detection methods can be classified mainly into machine learning-based and deep learning-based methods. The deep learning methods have comparative advantages against machine learning ones as they do not require preprocessing and feature engineering processes and their performance showed superior enhancements in many fields. Therefore, this paper aims to propose a Novel Hybrid Deep Learning Model for Detecting COVID-19-related Rumors on Social Media (LSTM–PCNN). The proposed model is based on a Long Short-Term Memory (LSTM) and Concatenated Parallel Convolutional Neural Networks (PCNN). The experiments were conducted on an ArCOV-19 dataset that included 3157 tweets; 1480 of them were rumors (46.87%) and 1677 tweets were non-rumors (53.12%). The findings of the proposed model showed a superior performance compared to other methods in terms of accuracy, recall, precision, and F-score.


2019 ◽  
Author(s):  
Mojtaba Haghighatlari ◽  
Gaurav Vishwakarma ◽  
Mohammad Atif Faiz Afzal ◽  
Johannes Hachmann

<div><div><div><p>We present a multitask, physics-infused deep learning model to accurately and efficiently predict refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds. We show that it outperforms earlier machine learning models by a significant margin, and that incorporating known physics into data-derived models provides valuable guardrails. Using a transfer learning approach, we augment the model to reproduce results consistent with higher-level computational chemistry training data, but with a considerably reduced number of corresponding calculations. Prediction errors of machine learning models are typically smallest for commonly observed target property values, consistent with the distribution of the training data. However, since our goal is to identify candidates with unusually large RI values, we propose a strategy to boost the performance of our model in the remoter areas of the RI distribution: We bias the model with respect to the under-represented classes of molecules that have values in the high-RI regime. By adopting a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates. We confirm that the models developed in this study can reliably predict the RIs of the top 1,000 compounds, and are thus able to capture their ranking. We believe that this is the first study to develop a data-derived model that ensures the reliability of RI predictions by model augmentation in the extrapolation region on such a large scale. These results underscore the tremendous potential of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in accelerating the discovery of new compounds and materials, such as organic molecules with high-RI for applications in opto-electronics.</p></div></div></div>


2020 ◽  
Author(s):  
Zakhriya Alhassan ◽  
MATTHEW WATSON ◽  
David Budgen ◽  
Riyad Alshammari ◽  
Ali Alessan ◽  
...  

BACKGROUND Predicting the risk of glycated hemoglobin (HbA1c) elevation can help identify patients with the potential for developing serious chronic health problems such as diabetes and cardiovascular diseases. Early preventive interventions based upon advanced predictive models using electronic health records (EHR) data for such patients can ultimately help provide better health outcomes. OBJECTIVE Our study investigates the performance of predictive models to forecast HbA1c elevation levels by employing machine learning approaches using data from current and previous visits in the EHR systems for patients who had not been previously diagnosed with any type of diabetes. METHODS This study employed one statistical model and three commonly used conventional machine learning models, as well as a deep learning model, to predict patients’ current levels of HbA1c. For the deep learning model, we also integrated current visit data with historical (longitudinal) data from previous visits. Explainable machine learning methods were used to interrogate the models and have an understanding of the reasons behind the models' decisions. All models were trained and tested using a large and naturally balanced dataset from Saudi Arabia with 18,844 unique patient records. RESULTS The machine learning models achieved the best results for predicting current HbA1c elevation risk. The deep learning model outperformed the statistical and conventional machine learning models with respect to all reported measures when employing time-series data. The best performing model was the multi-layer perceptron (MLP) which achieved an accuracy of 74.52% when used with historical data. CONCLUSIONS This study shows that machine learning models can provide promising results for the task of predicting current HbA1c levels. For deep learning in particular, utilizing the patient's longitudinal time-series data improved the performance and affected the relative importance for the predictors used. The models showed robust results that were consistent with comparable studies.


2020 ◽  
Author(s):  
Hirofumi Obinata ◽  
Peiying Ruan ◽  
Hitoshi Mori ◽  
Wentao Zhu ◽  
Hisashi Sasaki ◽  
...  

Abstract This study investigated the utility of artificial intelligence in predicting disease progression. We analysed 194 patients with COVID-19 confirmed by reverse transcription polymerase chain reaction. Among them, 31 patients had oxygen therapy administered after admission. To assess the utility of artificial intelligence in the prediction of disease progression, we used three machine learning models employing clinical features (patient’s background, laboratory data, and symptoms), one deep learning model employing computed tomography (CT) images, and one multimodal deep learning model employing a combination of clinical features and CT images. We also evaluated the predictive values of these models and analysed the important features required to predict worsening in cases of COVID-19. The multimodal deep learning model had the highest accuracy. The CT image was an important feature of multimodal deep learning model. The area under the curve of all machine learning models employing clinical features and the deep learning model employing CT images exceeded 90%, and sensitivity of these models exceeded 95%. C-reactive protein and lactate dehydrogenase were important features of machine learning models. Our machine learning model, while slightly less accurate than the multimodal model, still provides a valuable medical triage tool for patients in the early stages of COVID-19.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 643
Author(s):  
Rania M. Ghoniem ◽  
Abeer D. Algarni ◽  
Basel Refky ◽  
Ahmed A. Ewees

Ovarian cancer (OC) is a common reason for mortality among women. Deep learning has recently proven better performance in predicting OC stages and subtypes. However, most of the state-of-the-art deep learning models employ single modality data, which may afford low-level performance due to insufficient representation of important OC characteristics. Furthermore, these deep learning models still lack to the optimization of the model construction, which requires high computational cost to train and deploy them. In this work, a hybrid evolutionary deep learning model, using multi-modal data, is proposed. The established multi-modal fusion framework amalgamates gene modality alongside with histopathological image modality. Based on the different states and forms of each modality, we set up deep feature extraction network, respectively. This includes a predictive antlion-optimized long-short-term-memory model to process gene longitudinal data. Another predictive antlion-optimized convolutional neural network model is included to process histopathology images. The topology of each customized feature network is automatically set by the antlion optimization algorithm to make it realize better performance. After that the output from the two improved networks is fused based upon weighted linear aggregation. The deep fused features are finally used to predict OC stage. A number of assessment indicators was used to compare the proposed model to other nine multi-modal fusion models constructed using distinct evolutionary algorithms. This was conducted using a benchmark for OC and two benchmarks for breast and lung cancers. The results reveal that the proposed model is more precise and accurate in diagnosing OC and the other cancers.


2022 ◽  
pp. 181-194
Author(s):  
Bala Krishna Priya G. ◽  
Jabeen Sultana ◽  
Usha Rani M.

Mining Telugu news data and categorizing based on public sentiments is quite important since a lot of fake news emerged with rise of social media. Identifying whether news text is positive, negative, or neutral and later classifying the data in which areas they fall like business, editorial, entertainment, nation, and sports is included throughout this research work. This research work proposes an efficient model by adopting machine learning classifiers to perform classification on Telugu news data. The results obtained by various machine-learning models are compared, and an efficient model is found, and it is observed that the proposed model outperformed with reference to accuracy, precision, recall, and F1-score.


2020 ◽  
Vol 12 (12) ◽  
pp. 5074
Author(s):  
Jiyoung Woo ◽  
Jaeseok Yun

Spam posts in web forum discussions cause user inconvenience and lower the value of the web forum as an open source of user opinion. In this regard, as the importance of a web post is evaluated in terms of the number of involved authors, noise distorts the analysis results by adding unnecessary data to the opinion analysis. Here, in this work, an automatic detection model for spam posts in web forums using both conventional machine learning and deep learning is proposed. To automatically differentiate between normal posts and spam, evaluators were asked to recognize spam posts in advance. To construct the machine learning-based model, text features from posted content using text mining techniques from the perspective of linguistics were extracted, and supervised learning was performed to distinguish content noise from normal posts. For the deep learning model, raw text including and excluding special characters was utilized. A comparison analysis on deep neural networks using the two different recurrent neural network (RNN) models of the simple RNN and long short-term memory (LSTM) network was also performed. Furthermore, the proposed model was applied to two web forums. The experimental results indicate that the deep learning model affords significant improvements over the accuracy of conventional machine learning associated with text features. The accuracy of the proposed model using LSTM reaches 98.56%, and the precision and recall of the noise class reach 99% and 99.53%, respectively.


Author(s):  
Surenthiran Krishnan ◽  
Pritheega Magalingam ◽  
Roslina Ibrahim

<span>This paper proposes a new hybrid deep learning model for heart disease prediction using recurrent neural network (RNN) with the combination of multiple gated recurrent units (GRU), long short-term memory (LSTM) and Adam optimizer. This proposed model resulted in an outstanding accuracy of 98.6876% which is the highest in the existing model of RNN. The model was developed in Python 3.7 by integrating RNN in multiple GRU that operates in Keras and Tensorflow as the backend for deep learning process, supported by various Python libraries. The recent existing models using RNN have reached an accuracy of 98.23% and deep neural network (DNN) has reached 98.5%. The common drawbacks of the existing models are low accuracy due to the complex build-up of the neural network, high number of neurons with redundancy in the neural network model and imbalance datasets of Cleveland. Experiments were conducted with various customized model, where results showed that the proposed model using RNN and multiple GRU with synthetic minority oversampling technique (SMOTe) has reached the best performance level. This is the highest accuracy result for RNN using Cleveland datasets and much promising for making an early heart disease prediction for the patients.</span>


Sign in / Sign up

Export Citation Format

Share Document