A Semianalytic Method for Vibration Analysis of a Sandwich FGP Doubly Curved Shell with Arbitrary Boundary Conditions
Due to the excellent mechanical properties of doubly curved structure and functionally graded porous (FGP) material, the study of their vibration characteristics has attracted wide attention. The main aim of this research is to establish a formulation for free and forced vibration analysis of a new Sandwich FGP doubly curved structure. Four models of Sandwich materials are considered. The potential energy and kinetic energy functions are obtained on the foundation of the first-order shear deformation theory (FSDT). The idea of domain energy decomposition is applied to the theoretical modeling, where the structure is segmented along the generatrix direction. The continuity conditions for the interfaces between adjacent segments are balanced by the weighted parameters. For each segment, the displacement functions are selected as the Jacobi orthogonal polynomials and trigonometric series. The boundary conditions of the structure are obtained by the boundary spring simulation technique. The solution is obtained by the variational operation of the structural functional. The convergence performance and correctness of the theoretical model are examined by several numerical examples. Finally, some novel results are given, where free and forced vibration characteristics of Sandwich FGP doubly curved structures are examined in detail.