scholarly journals Short-Term Traffic Flow Prediction: A Method of Combined Deep Learnings

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chuanxiang Ren ◽  
Chunxu Chai ◽  
Changchang Yin ◽  
Haowei Ji ◽  
Xuezhen Cheng ◽  
...  

Short-term traffic flow prediction can provide a basis for traffic management and support for travelers to make decisions. Accurate short-term traffic flow prediction also provides necessary conditions for the sustainable development of the traffic environment. Although the application of deep learning methods for traffic flow prediction has achieved good accuracy, the problem of combining multiple deep learning methods to improve the prediction accuracy of a single method still has a margin for in-depth research. In this article, a combined deep learning prediction (CDLP) model including two paralleled single deep learning models, CNN-LSTM-attention model and CNN-GRU-attention model, is established. In the model, a one-dimensional convolutional neural network (1DCNN) is used to extract traffic flow local trend features and RNN variants (LSTM and GRU) with attention mechanism are used to extract long temporal dependencies trend features. Moreover, a dynamic optimal weighted coefficient algorithm (DOWCA) is proposed to calculate the dynamic weights of CNN-LSTM-attention and CNN-GRU-attention with the goal of minimizing the sum of squared errors of the CDLP model. Then, the neuron number, loss function, optimization algorithm, and other parameters of the CDLP model are discussed and set through experiments. Finally, the training set and test set for the CDLP model are established through the processing of traffic flow data collected from the field. The CDLP model is trained and tested, and the prediction results of traffic flow are obtained and analyzed. It indicates that the CDLP model can fit the change trend of traffic flow very well and has better performance. Furthermore, under the same dataset, the results from the CDLP model are compared with baseline models. It is found that the CDLP model has higher prediction accuracy than baseline models.

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2946 ◽  
Author(s):  
Wangyang Wei ◽  
Honghai Wu ◽  
Huadong Ma

Smart cities can effectively improve the quality of urban life. Intelligent Transportation System (ITS) is an important part of smart cities. The accurate and real-time prediction of traffic flow plays an important role in ITSs. To improve the prediction accuracy, we propose a novel traffic flow prediction method, called AutoEncoder Long Short-Term Memory (AE-LSTM) prediction method. In our method, the AutoEncoder is used to obtain the internal relationship of traffic flow by extracting the characteristics of upstream and downstream traffic flow data. Moreover, the Long Short-Term Memory (LSTM) network utilizes the acquired characteristic data and the historical data to predict complex linear traffic flow data. The experimental results show that the AE-LSTM method had higher prediction accuracy. Specifically, the Mean Relative Error (MRE) of the AE-LSTM was reduced by 0.01 compared with the previous prediction methods. In addition, AE-LSTM method also had good stability. For different stations and different dates, the prediction error and fluctuation of the AE-LSTM method was small. Furthermore, the average MRE of AE-LSTM prediction results was 0.06 for six different days.


2020 ◽  
Vol 32 (6) ◽  
pp. 747-760
Author(s):  
Changxi Ma ◽  
Limin Tan ◽  
Xuecai Xu

In order to improve the accuracy of short-term traffic flow prediction, a combined model composed of artificial neural network optimized by using Genetic Algorithm (GA) and Exponential Smoothing (ES) has been proposed. By using the metaheuristic optimal search ability of GA, the connection weight and threshold of the feedforward neural network trained by a backpropagation algorithm are optimized to avoid the feedforward neural network falling into local optimum, and the prediction model of Genetic Artificial Neural Network (GANN) is established. An ES prediction model is presented then. In order to take the advantages of the two models, the combined model is composed of a weighted average, while the weight of the combined model is determined according to the prediction mean square error of the single model. The road traffic flow data of Xuancheng, Anhui Province with an observation interval of 5 min are used for experimental verification. Additionally, the feedforward neural network model, GANN model, ES model and combined model are compared and analysed, respectively. The results show that the prediction accuracy of the optimized feedforward neural network is much higher than that before the optimization. The prediction accuracy of the combined model is higher than that of the two single models, which verifies the feasibility and effectiveness of the combined model.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012006
Author(s):  
Lee Pin Loon ◽  
Elbaraa Refaie ◽  
Ahmad Athif Mohd Faudzi

Abstract This paper proposes data analysis for traffic flow prediction of customs to help the officer in Customs, Immigration, and Quarantine (CIQ) Complex to understand more about the traffic situation in CIQ. Currently in CIQ, the traffic behaviour for car is unpredictable; sometimes the traffic is very heavy while there are times where all the lanes are cleared. There is a plan to have installation of cameras for smart traffic management system in the future. Therefore, this research aims to have prediction of traffic flow based on time and visualize the trend of traffic data for the officer. The data consist of traffic flow and the respective timestamp. To analyse it with time-series data, Long Short-Term Memory (LSTM) Recurrent Network is used as deep learning approach for prediction. The data pre-processing and training of model would be done using Python. To organize the data, Tableau Prep Builder is used and integrate with Python to publish the data to Tableau Server for storage. An interactive dashboard would be designed on Tableau and made available online for the usage of the officer.


Sign in / Sign up

Export Citation Format

Share Document