scholarly journals A Millimeter-Wave Wideband Circularly Polarized Planar Spiral Antenna Array with Unequal Amplitude Feeding Network

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huakang Chen ◽  
Yu Shao ◽  
Zhangjian He ◽  
Changhong Zhang ◽  
Zhizhong Zhang

A 2 × 2 wideband circularly polarized (CP) antenna array operating at millimeter wave (mmWave) band is presented. The array element is a wideband CP Archimedean spiral radiator with special-shaped ring slot. The elements are fed by an unequal amplitude (UA) feeding network based on a microstrip line (MSL) power divider. The side lobe level is improved by this UA feeding network. In addition, a cross slot is employed to isolate the elements for decoupling. A prototype is fabricated, and the measured results show that the proposed array achieves an impedance bandwidth (IBW) of 6.31 GHz (22.5% referring to 28 GHz) and an axial ratio bandwidth (ARBW) of 7.32 GHz (26.1% referring to 28 GHz). The peak gain of the proposed array is 11.3 dBic, and the gain is greater than 9.3 dBic within the whole desired band (from 25 GHz to 31 GHz). The proposed array consists of only one substrate layer and can be built by the conventional printed circuit board technology. Attributed to the characteristics of wide bandwidth, simple structure, low profile, and low cost, the proposed antenna array has a great potential in mmWave wireless communications.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Dalia M. Elsheakh ◽  
Magdy F. Iskander

This paper describes the design and development of a triband with circularly polarized quasi-Yagi antenna for ka-band and short range wireless communications applications. The proposed antenna consists of an integrated balun-fed printed dipole, parasitic folded dipole and a short strip, and a modified ground plane. The antenna structure, together with the parasitic elements, is designed to achieve circular polarization and triband operating at resonant frequencies of 13.5 GHz, 30 GHz, and 60 GHz. Antenna design was first simulated using HFSS ver.14, and the obtained results were compared with experimental measurements on a prototype developed on a single printed circuit board. Achieved characteristics include −10 dB impedance bandwidth at the desired bands, circular polarization axial ratioAR<3 dB, front to back ratio of 6 dB, gain value of about 4 dBi, and average radiation efficiency of 60%. The paper includes comparison between simulation and experimental results.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Changhong Zhang ◽  
Xianling Liang ◽  
Junping Geng ◽  
Ronghong Jin

A broadband dual circularly polarized magnetoelectric dipole antenna (MEDA) fed by a miniaturized six-branch hybrid coupler (SBHC) is presented in this paper. First, a dual linearly polarized MEDA with a bandwidth of 73.3% is developed based on the previous design with a bandwidth of 52%. The SBHC, with a miniaturized size of 53%, is designed on a printed circuit board underneath the ground of the MEDA, which possesses an efficient bandwidth of 80.7% to generate the antenna for dual circular polarization. Measurement results show that the proposed dual circularly polarized MEDA achieves an impedance bandwidth of 84.5%, an axial-ratio bandwidth of 81.8%, and a nearly symmetrical, stable unidirectional radiation pattern with an average gain of 8 dBic over its impedance bandwidth.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Preet Kaur ◽  
Pravin R. Prajapati

Abstract A bilayer split-ring chiral metamaterial converts the linearly polarized wave, into a nearly perfect left or right-handed circularly polarized wave. The proposed antenna is intended to operate at center frequency of 5.80 GHz with switchable polarization capability. The polarization re-configurability is achieved by electronically switching of two PIN-diode pairs, which are embedded into bilayer split-ring Chiral Metamaterial. The optimized length of rectangular patch is 16 mm and width is 12.1 mm. Two types of radiation characteristics offered by the proposed antenna; left hand circularly polarized in mode 1 and right hand circularly polarized in mode 2. Measured results show that its impedance bandwidth is 155 MHz from 5.70 to 5.855 GHz for both mode 1 and mode 2. The measured axial-ratio bandwidth is 100 MHz from 5.75 to 5.85 GHz for mode 1 and 110 MHz from 5.73 to 5.84 GHz for mode 2. Antenna has LHCP gain of 2.52 dBi and RHCP gain of −23 dBi in mode 1. RHCP gain of 2 dBi and polarization purity of about −20 dBi is obtained in mode 2. The proposed antenna has simple structure, low cost and it has potential application in field of wireless communication (i.e., WiMax, WLAN etc.).


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 651-655 ◽  
Author(s):  
Yilin Liu ◽  
Kama Huang

Abstract A novel design of a coplanar waveguide (CPW) feed antenna array with circular polarization (CP) and a high front-to-back ratio is described. The proposed CP array is achieved by using a compact CPW–slotline transition network etched in the ground plane. The measured results show that this kind of feeding method can improve the impedance bandwidth, as well as the axial ratio bandwidth of the CP antenna array and provide adequate gain. The proposed array can achieve a 6.08% impedance bandwidth and a 4.10% CP bandwidth. Details of the antenna design and experimental results are presented and discussed.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 521 ◽  
Author(s):  
Naser Ojaroudi Parchin ◽  
Haleh Jahanbakhsh Basherlou ◽  
Mohammad Alibakhshikenari ◽  
Yasser Ojaroudi Parchin ◽  
Yasir I. A. Al-Yasir ◽  
...  

A design of mobile-phone antenna array with diamond-ring slot elements is proposed for fifth generation (5G) massive multiple-input/multiple-output (MIMO) systems. The configuration of the design consists of four double-fed diamond-ring slot antenna elements placed at different corners of the mobile-phone printed circuit board (PCB). A low-cost FR-4 dielectric with an overall dimension of 75 × 150 mm2 is used as the design substrate. The antenna elements are fed by 50-Ohm L-shaped microstrip-lines. Due to the orthogonal placement of microstrip feed lines, the diamond-ring slot elements can exhibit the polarization and radiation pattern diversity characteristic. A good impedance bandwidth (S11 ≤ −10 dB) of 3.2–4 GHz has been achieved for each antenna radiator. However, for S11 ≤ −6 dB, this value is 3–4.2 GHz. The proposed design provides the required radiation coverage of 5G smartphones. The performance of the proposed MIMO antenna design is examined using both simulation and experiment. High isolation, high efficiency and sufficient gain-level characteristics have been obtained for the proposed MIMO smartphone antenna. In addition, the calculated total active reflection coefficient (TARC) and envelope correlation coefficient (ECC) of the antenna elements are very low over the whole band of interest which verify the capability of the proposed multi-antenna systems for massive MIMO and diversity applications. Furthermore, the properties of the design in Data-mode/Talk-mode are investigated and presented.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Ke Gong ◽  
Xue Hui Hu ◽  
Peng Hu ◽  
Bing Jie Deng ◽  
You Chao Tu

A series-fed linear substrate-integrated dielectric resonator antenna array (SIDRAA) is presented for millimeter-wave applications, in which the substrate-integrated dielectric resonator antenna (SIDRA) elements and the feeding structure can be codesigned and fabricated using the same planar process. A prototype 4 × 1 SIDRAA is designed at Ka-band and fabricated with a two-layer printed circuit board (PCB) technology. Four SIDRAs are implemented in the Rogers RT6010 substrate using the perforation technique and fed by a compact substrate-integrated waveguide (SIW) through four longitudinal coupling slots within the Rogers RT5880 substrate. The return loss, radiation patterns, and antenna gain were experimentally studied, and good agreement between the measured and simulated results is observed. The SIDRAA example provides a bandwidth of about 10% around 34.5 GHz for 10 dB return loss and stable broadside radiation patterns with the peak gain of 10.5–11.5 dBi across the band.


2017 ◽  
Vol 9 (8) ◽  
pp. 1741-1748 ◽  
Author(s):  
Mahdi Jalali ◽  
Mohammad Naser-Moghadasi ◽  
Ramezan Ali Sadeghzadeh

Wide-band circularly polarized multi-input multi-output (MIMO) antenna array with a 2 × 4 feed network was proposed for C-band application. Different unique techniques were utilized in the proposed array to enhance the antenna characteristics, such as gain, 3 dB axial ratio bandwidth (ARBW), impedance tuning, and ruinous mutual coupling effects. A miniaturized dual-feed Tai chi-shaped antenna element with a pair of feeding points and a pair of eyebrow-shaped strips was presented for enhancing circular polarization (CP) purity and impedance matching. For a better improvement of CP features, a 2*4 MIMO sequentially rotated (MIMO-SR) feed network was used to achieve broader 3 dB ARBW. Besides, the MIMO feature of the feed network could control the left- and right-handed CP, respectively. Ultimately, specific forms of slot and slit structures were applied onto the top layer of MIMO feed network that provided a high isolation between the radiating elements and array network. Furthermore, the diversity gain (DG) was studied. The extracted measured results illustrated an impedance bandwidth of 3.5–8.2 GHz at port 1 and 3.5–8.3 GHz at port 2 for VWSR < 2 and 3 dB ARBW of 4.6–7.6 GHz at port 1 and 4.6–7.5 GHz at port 2. The peak gain of 9.9 dBi was at 6 GHz.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Li-Ming Si ◽  
Yong Liu ◽  
Yongjun Huang ◽  
Weiren Zhu

A slot-microstrip-covered and waveguide-cavity-backed monopulse antenna array is proposed for high-resolution tracking applications at Ka-band. The monopulse antenna array is designed with a microstrip with2×32slots, a waveguide cavity, and a waveguide monopulse comparator, to make the structure simple, reduce the feeding network loss, and increase the frequency bandwidth. The2×32slot-microstrip elements are formed by a metal clad dielectric substrate and slots etched in the metal using the standard printed circuit board (PCB) process with dimensions of 230 mm  ×  10 mm. The proposed monopulse antenna array not only maintains the advantages of the traditional waveguide slot antenna array, but also has the characteristics of wide bandwidth, high consistence, easy of fabrication, and low cost. From the measured results, it exhibits good monopulse characteristics, including the following: the maximum gains of sum pattern are greater than 24 dB, the 3 dB beamwidth of sum pattern is about 2.2 degrees, the sidelobe levels of the sum pattern are less than −18 dB, and the null depths of the difference pattern are less than −25 dB within the operating bandwidth between 33.65 GHz and 34.35 GHz for VSWR ≤ 2.


A single feed microstrip patch elliptically annular antenna array has been proposed for high gain circularly polarized (CP) radiation. An array of elliptically annular patches antenna resonates at a frequency of 3.77 GHz which can be used in satellite communication and radar application. A corporate feed network with quarter-wave transformer has been used for uniform excitation of all the array elements. Thus a good circular polarization is obtained by using a single feed with enhanced gain 15.62 dB compared to single patch. The radiation pattern, axial ratio and input impedance of the proposed elliptically annular antenna array is compared with single element elliptically annular antenna. A substantial gain enhancement with low side lobe level (SLL) is observed keeping circular polarization intact. Further, simulated and measured results of the proposed antenna array have been compared and found that axial ratio and gain are in good agreement.


2017 ◽  
Vol 9 (7) ◽  
pp. 1533-1540 ◽  
Author(s):  
Xi Chen ◽  
Zhen Wei ◽  
Dan Wu ◽  
Long Yang ◽  
Guang Fu

A compact three-dimensional (3D) circularly polarized (CP) microstrip antenna is presented in this paper. The antenna adopts three low-cost printed circuit boards to form an integrated and closed 3D structure, and the radiation patch and the feed patches are etched on the surface of that. A crossed slot is cut on the radiation patch to miniaturize the antenna, and triangular feed patches are introduced to increase the bandwidths. In addition, because of the utilization of a low-loss series feed line, the antenna has a high efficiency of more than 95%. A prototype of the antenna is measured to validate the method. The dimensions of the antenna is 0.064λ × 0.36λ (λ is the wavelength in free space at 1.2 GHz). The results indicate that the impedance bandwidth for voltage standing wave ratio ≤ 2 reaches 23%, and the bandwidth for axial ratio (AR) ≤ 3 dB reaches 10.1%. In the overlap band, the gains are > 4.5dBic. Additionally, the 3 dB beamwidth is more than 114°, and the beamwidth for AR ≤ 3 dB is more than 131° at 1.2 GHz.


Sign in / Sign up

Export Citation Format

Share Document