scholarly journals Machine Vision and Big Data-Driven Sports Athletes Action Training Intervention Model

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hui Jiang ◽  
Ping wang ◽  
Lei Peng ◽  
Xiaofeng Wang

In recent years, athlete action recognition has become an important research field for showing and recognition of athlete actions. Generally speaking, movement recognition of athletes can be performed through a variety of modes, such as motion sensors, machine vision, and big data analysis. Among them, machine vision and big data analysis usually contain significant information which can be used for various purposes. Machine vision can be expressed as the recognition of the time sequence of a series of athlete actions captured through camera, so that it can intervene in the training of athletes by visual methods and approaches. Big data contains a large number of athletes’ historical training and competition data which need exploration. In-depth analysis and feature mining of big data will help coach teams to develop training plans and devise new suggestions. On the basis of the above observations, this paper proposes a novel spatiotemporal attention map convolutional network to identify athletes’ actions, and through the auxiliary analysis of big data, gives reasonable action intervention suggestions, and provides coaches and decision-making teams to formulate scientific training programs. Results of the study show the effectiveness of the proposed research.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Kehua Miao ◽  
Jie Li ◽  
Wenxing Hong ◽  
Mingtao Chen

The booming development of data science and big data technology stacks has inspired continuous iterative updates of data science research or working methods. At present, the granularity of the labor division between data science and big data is more refined. Traditional work methods, from work infrastructure environment construction to data modelling and analysis of working methods, will greatly delay work and research efficiency. In this paper, we focus on the purpose of the current friendly collaboration of the data science team to build data science and big data analysis application platform based on microservices architecture for education or nonprofessional research field. In the environment based on microservices that facilitates updating the components of each component, the platform has a personal code experiment environment that integrates JupyterHub based on Spark and HDFS for multiuser use and a visualized modelling tools which follow the modular design of data science engineering based on Greenplum in-database analysis. The entire web service system is developed based on spring boot.


2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Xi Chen ◽  
Bo Fan ◽  
Jie Zheng ◽  
Hongyan Cui

At present, it has become a hot research field to improve production efficiency and improve life experience through big data analysis. In the process of big data analysis, how to vividly display the results of the analysis is crucial. So, this paper introduces a set of big data visualization analysis platform based on financial field. The platform adopts the MVC system architecture, which is mainly composed of two parts: the background and the front end. The background part is built on the Django framework, and the front end is built with html5, css3, and JavaScript. The chart is rendered by Echarts. The platform can realize the classification of customers' savings potential through bank data, and make portraits of customers with different savings levels. The data analysis results can be dynamically displayed and interact wit


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Loris Belcastro ◽  
Riccardo Cantini ◽  
Fabrizio Marozzo ◽  
Alessio Orsino ◽  
Domenico Talia ◽  
...  

AbstractIn the age of the Internet of Things and social media platforms, huge amounts of digital data are generated by and collected from many sources, including sensors, mobile devices, wearable trackers and security cameras. This data, commonly referred to as Big Data, is challenging current storage, processing, and analysis capabilities. New models, languages, systems and algorithms continue to be developed to effectively collect, store, analyze and learn from Big Data. Most of the recent surveys provide a global analysis of the tools that are used in the main phases of Big Data management (generation, acquisition, storage, querying and visualization of data). Differently, this work analyzes and reviews parallel and distributed paradigms, languages and systems used today to analyze and learn from Big Data on scalable computers. In particular, we provide an in-depth analysis of the properties of the main parallel programming paradigms (MapReduce, workflow, BSP, message passing, and SQL-like) and, through programming examples, we describe the most used systems for Big Data analysis (e.g., Hadoop, Spark, and Storm). Furthermore, we discuss and compare the different systems by highlighting the main features of each of them, their diffusion (community of developers and users) and the main advantages and disadvantages of using them to implement Big Data analysis applications. The final goal of this work is to help designers and developers in identifying and selecting the best/appropriate programming solution based on their skills, hardware availability, application domains and purposes, and also considering the support provided by the developer community.


2018 ◽  
Vol 30 (5) ◽  
pp. 554-571 ◽  
Author(s):  
Maria Vincenza Ciasullo ◽  
Orlando Troisi ◽  
Francesca Loia ◽  
Gennaro Maione

Purpose The purpose of this paper is to provide a better understanding of the reasons why people use or do not use carpooling. A further aim is to collect and analyze empirical evidence concerning the advantages and disadvantages of carpooling. Design/methodology/approach A large-scale text analytics study has been conducted: the collection of the peoples’ opinions have been realized on Twitter by means of a dedicated web crawler, named “Twitter4J.” After their mining, the collected data have been treated through a sentiment analysis realized by means of “SentiWordNet.” Findings The big data analysis identified the 12 most frequently used concepts about carpooling by Twitter’s users: seven advantages (economic efficiency, environmental efficiency, comfort, traffic, socialization, reliability, curiosity) and five disadvantages (lack of effectiveness, lack of flexibility, lack of privacy, danger, lack of trust). Research limitations/implications Although the sample is particularly large (10 percent of the data flow published on Twitter from all over the world in about one year), the automated collection of people’s comments has prevented a more in-depth analysis of users’ thoughts and opinions. Practical implications The research findings may direct entrepreneurs, managers and policy makers to understand the variables to be leveraged and the actions to be taken to take advantage of the potential benefits that carpooling offers. Originality/value The work has utilized skills from three different areas, i.e., business management, computing science and statistics, which have been synergistically integrated for customizing, implementing and using two IT tools capable of automatically identifying, selecting, collecting, categorizing and analyzing people’s tweets about carpooling.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Na Tian ◽  
Sang-Bing Tsai

This paper provides an in-depth analysis and study of the interactive flipped classroom model for a digital micro-video for a big data English course. To improve the learning efficiency of English courses and reduce the learning pressure of students, the thesis also uses certain techniques to apply audiovisual language to the production of specific micro-class videos, broadcast the successfully recorded micro-class courses to students, and then use the questionnaire to randomly distribute the designed audiovisual language use questionnaire. Micro-classes earnestly perform data statistics for students and finally conduct data analysis to summarize and verify the effects of micro-class audiovisual language use. The improved algorithm can effectively reduce the fluctuation of the consumption of various resources in the cluster and make the services in the cluster more stable. The new distributed interprocess communication based on protocol and serialization technology is more efficient than traditional communication based on protocol standards, reduces bandwidth consumption in the cluster, and improves the throughput of each node in the cluster. The content design and scripting of micro-video teaching resources are based on this. Then, the production process of micro-video teaching resources is explained, according to the selection of tools, the preparation, recording, editing, and generation of materials.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yi Zheng

At present, big data related technologies are developing rapidly, and major companies provide big data analysis services. However, the big data analysis system formed by the combination method cannot sense each other and lacks cooperation, resulting in a certain amount of waste of resources in the big data analysis system. In order to find the key technology of the data analysis system and conduct in-depth analysis of the media data, this paper proposes a scheduling algorithm based on artificial intelligence (AI) to implement task scheduling and logical data block migration. By analyzing the experimental results, we know that the performance of LAS (Logistic-Block Affinity Scheduler) is improved by 23.97%, 16.11%, and 10.56%, respectively, compared with the other three algorithms. Based on real new media data, this article analyzes the content of media data and user behavior in depth through big data analysis methods. Compared with other methods, the algorithm model in this paper optimizes the accuracy of hot topic extraction, which has important implications for media data mining. In addition, the analysis results of the emotional characteristics, audience characteristics, and hot topic communication characteristics obtained by the research also have practical value. This method improves the recall rate and F value by 5% and 4.7%, respectively, and the overall F value of emotional judgment is about 88.9%.


2019 ◽  
Vol 9 (1) ◽  
pp. 01-12 ◽  
Author(s):  
Kristy F. Tiampo ◽  
Javad Kazemian ◽  
Hadi Ghofrani ◽  
Yelena Kropivnitskaya ◽  
Gero Michel

Sign in / Sign up

Export Citation Format

Share Document