scholarly journals Width Design of Small Coal Pillar of Gob-Side Entry Driving in Soft Rock Working Face and Its Application of Zaoquan Coal Mine

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ai Chen

Reasonable width of gob-side coal pillar can reduce the waste of coal resources and is conducive to roadway stability. According to the distribution of internal and external stress fields at the working face, a method for determining the width of gob-side coal pillar was proposed. The coal pillar and roadway should be set within the internal stress field, and support is provided through the anchored part and the intact part of the coal pillar. The method was used in the design of the coal pillar at No. 130205 working face of Zaoquan Coal Mine. The calculation results indicated that the width of a coal pillar suitable for gob-side entry is 6.0 m. It is reasonable to arrange the roadway and coal pillar in the low-stress zone with a width of 11 m. During tunnelling of roadway and stoping of the working face, the deformation of the roadway increased with a reduction in the distance from the working face. Even during stoping of the working face, there was an approximately 1.5 m intact zone in the coal pillar. This indicates that the proposed method of designing small coal pillar of gob-side entry driving is reliable.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fengnian Wang ◽  
Shizhuang Chen ◽  
Pan Gao ◽  
Zhibiao Guo ◽  
Zhigang Tao

In this study, the deformation characteristics and mechanical properties of coal and rock mass in the S2N5 working face of the Xiaokang coal mine are analyzed to address the problem of large deformation of soft rocks with high in situ stress surrounding roadways. Through a newly developed grouting pipe, a double-shell grouting technology, consisting of low-pressure grouting and high-pressure split grouting, is proposed for the Xiaokang coal mine. In addition, the effect of grouting is evaluated by borehole peeping and deformation monitoring. The results show that the double-shell grouting technology can effectively improve the overall mechanical properties of the surrounding coal and rock mass, preventing the large deformation and failure of the roadway. This technology can be useful when analyzing and preventing large deformation of soft rock roadways.


2014 ◽  
Vol 501-504 ◽  
pp. 1827-1831
Author(s):  
Xiao Yu Zhang ◽  
Yu Ming Tian ◽  
Ai Dong He ◽  
Zhan Han

The deformation and failure problems in soft rock supporting cannot be effectively controlled with conventional methods. This paper put forward the coupling support technologies by the use of large deformation constant-resistance bolt, large deformation constant-resistance cable and bottom-grouting pipes, with the analysis of deformation and failure reseasons, combing with verifications in field-test project at B103W01 working face, State Grid Energy abundance Coal Limited Shajihai Coal Mine. It also provides the reference for the tunnels supporting under similar conditions.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Xingping Lai ◽  
Huicong Xu ◽  
Jingdao Fan ◽  
Zeyang Wang ◽  
Zhenguo Yan ◽  
...  

In order to explore the mechanism of coal pillar rock burst in the overlying coal body area, taking W1123 working face of Kuangou Coal Mine as the engineering background, the full mining stage of W1123 is simulated by FLAC3D. It is found that the high stress concentration area has appeared on both sides of the coal pillar when W1123 does not start mining. With the advance of the working face, the high stress concentration area forms X-shaped overlap. There is an obvious difference in the stress state between the coal pillar under the solid coal and the coal pillar under the gob in W1123. The concrete manifestation is that the vertical stress of the coal pillar below the solid coal is greater than the vertical stress of the coal pillar below the gob. The position of the obvious increase of the stress of the coal pillar in the lower part of the solid coal is ahead of the advancing position of the working face, and the position of the obvious increase of the stress of the lower coal pillar in the gob lags behind the advancing position of the working face. At the same time, in order to accurately reflect the true stress environment of coal pillars, the author conducted a physical similarity simulation experiment in the laboratory to study the local mining process of the W1123 working face, and it is found that under the condition of extremely thick and hard roof, the roof will be formed in the gob, the mechanical model of roof hinged structurer is constructed and analyzed, and the results show that the horizontal thrust of roof structure increases with the increase of rotation angle. With the development of mining activities, the self-stable state of the high stress balance in the coal pillar is easily broken by the impact energy formed by the sudden collapse of the key strata. Therefore, the rock burst of coal pillar in the overlying coal body area is the result of both static load and dynamic load. In view of the actual situation of the Kuangou Coal Mine, the treatment measures of rock burst are put forward from the point of view of the coal body and rock mass.


2012 ◽  
Vol 152-154 ◽  
pp. 1097-1101
Author(s):  
Zhong Dong Yang

Because of deep mining and the serious dynamic pressure appearance in Zhaogezhuang coal mine, this paper has statistical and analyzed phenomena of dynamic pressure appearance, and proposed the engineering defects method to relief the pressure for high stress zone of working face and roadway according to the actual situation, which can transfer the stress distribution of coal rock and release impact energy. Based on the numerical simulation analysis of pressure relief on cavity defects, it has analyzed the feasibility of pressure relief using engineering defect, acquired good effect of pressure relief and achieved the safety of coal mining in the 2337E working face.


2014 ◽  
Vol 675-677 ◽  
pp. 1395-1400 ◽  
Author(s):  
Wen Zhou Li

AH Wilson coal pillar was used widely as it’s simply, but it’s appeared large error for field implementation as its difference assume conditions, mine depth H and mine thickness m. AH Wilson coal pillar formula was studied precisely by in-site stresses test and numerical simulation analysis for N3-5 top coal caving working face of CHANGCUN coal mine in Lu’an coal district of China, then modified AH Wilson formula was put forward as L = 0.008mH + 8.4,then the precise coal pillar size 18m was used in filed implementation, filed testing proved coal pillar size was reasonable.


2021 ◽  
Vol 11 (17) ◽  
pp. 7953
Author(s):  
Yuantian Sun ◽  
Ruiyang Bi ◽  
Qingliang Chang ◽  
Reza Taherdangkoo ◽  
Junfei Zhang ◽  
...  

The roadway stability has been regarded as the main challenging issue for safety and productivity of deep underground coal mines, particularly where roadways are affected by coal mining activities. This study investigates the −740 m main roadway in the Jining No. 2 Coal Mine to provide a theoretical basis for the stability control of the main deep roadway affected by disturbances of adjacent working activities. Field surveys, theoretical analyses, and numerical simulations are used to reveal mechanisms of the coal mining disturbance. The field survey shows that the deformation of roadway increases when the work face advances near the roadway group. Long working face mining causes the key strata to collapse based on the key strata theory and then disturbs the adjacent roadway group. When the working face is 100 m away from the stop-mining line, the roadway group is affected by the mining face, and the width roadway protection coal pillar is determined to be about 100 m. Flac3D simulations prove the accuracy of the theoretical result. Through reinforcement and support measures for the main roadway, the overall strength of the surrounding rock is enhanced, the stability of the surrounding rock of the roadway is guaranteed, and the safe production of the mine is maintained.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wenhao Guo ◽  
Anye Cao ◽  
Chengchun Xue ◽  
Yang Hu ◽  
Songwei Wang ◽  
...  

Coal mine pillar burst frequently occurs in Western China, which seriously restricts safe production. This paper takes the 35 m coal pillar of the 3102 working face of MKQ coal mine as the engineering background. The mechanism and evolution control of pillar bursts in multithick key strata are studied using field investigation, theoretical analysis, and numerical simulation. The mechanism of dynamic and static stress-induced pillar bursts was revealed combining the “O-X” broken features for key strata and numerical simulation of pillar stress evolution. A prevention scheme is put forward for strata presplit blasting and adjusting coal pillar width to minimize the dynamic and static stresses. The results demonstrate the following. (1) In the multithick strata, the first and second near-field subkey strata have perpendicular “O-X” broken features, whereas the third far-field subkey has parallel “O-X” broken features. The working face has three kinds of periodic weighting phenomena: long, medium, and short. (2) The simulated vertical stress curve of 35 m coal pillar goes through three states: two-peak, asymmetric trapezoidal and symmetrical trapezoidal shape with the different advancing position of working face. The stress concentration is extensively promoting a high-risk area for rock burst. (3) The coal pillar burst was induced by the superposition of energy released by the key strata breaking and the elastic energy accumulated in the wide coal pillar. (4) The monitoring data showed that the long, medium, and short periodic weighting steps of multithick key strata are 141.6 m, 43.2–49.6 m, and 17.6–27.2 m, respectively. The microseismic events energy, frequency, and stress of hydraulic support increment are the highest during the long periodic weighting, and the spatial distribution of microseismic events coincides with the stress concentration area. The theoretical analysis is confirmed with the field practice.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 211 ◽  
Author(s):  
Xiaoping Shao ◽  
Xin Li ◽  
Long Wang ◽  
Zhiyu Fang ◽  
Bingchao Zhao ◽  
...  

During strip backfilling mining in coal mines, the backfilling material is the main support structure. Therefore, studying the pressure law of the backfilling material is essential for the safe and efficient mining of coal resources. Based on research into strip backfilling mining at working face number 3216 of the Shanghe Coal Mine, and to smooth transition of overlying strata loads to the backfilling material, this study proposes a three-stage strip backfilling mining method. Based on thin-plate theory, an elastic thin-plate model, a reasonable spacing of strip mining is constructed, and the reasonable mining parameters of “mining 7 m to retain 8 m” at working face number 3216 of the Shanghe Coal Mine are determined. The law of backfilling pressure in three-stage strip backfilling mining is studied through numerical simulation and physical simulation experiments. The results show that field measurement results are basically consistent with the experimental results and numerical simulation results. When three-stage strip backfilling mining is adopted, the stage-one backfilling material is the main bearing body to which the overlying rock load transfers smoothly and gradually, and the structure of the “overburden-coal pillar (or backfilling strip)” in the stope remains stable. In three-stage strip backfilling mining, the overlying rock load is ultimately transferred to the stage-one backfilling material, the stage-two backfilling material is the auxiliary bearing body, and the stage-three backfilling material mainly provides long-term stable lateral support for the stage-one backfilling material.


2012 ◽  
Vol 524-527 ◽  
pp. 396-403 ◽  
Author(s):  
De Chuan Yang ◽  
Ming Zhong Gao ◽  
Yun Hai Cheng ◽  
Wu Sheng ◽  
Jia Sheng Chen

The filling belt of gob-side entry retaining with the character of soft rock composite roof,deforms violently,affected by the fracture and rotation of the main roof,and is prone to instability.This essay,considering characteristecs of coal mine pressure behavior on -790m 1311 (1) working face ventilation roadway at DingJi coal mine in HuaiNan,puts forward structural mech -anics model of the key block of gob-side entry retaining,which is used to forecast the position of the fracture line of the main roof, and analyze the roof subsidence at the side of the filling belt;It applies FLAC and UDEC to simulate distribution of plastic zones of surrounding rock of gob-side entry retaining,and stress variation law of the immediate roof and the main roof along coal seam inclination.The results show that:stress concentration factor of the immediate roof on the filling belt is about 1.6,first decreasing and then increasing with increasing width of the filling belt,which indicates that reasonable width of the filling belt is 3.0 m in accordance with the requirement of economic security requirment. The filling belt has significantly wide distribution of the plastic zones,with its four corners obviously plasticized,and overlying strata above the filling belt at side of goaf suffering upward plasticization,which is the result of rotation of the main roof; Deform- ation instability of filling belt is mainly caused by fracture rotation of the main roof;Finally, the measures to reduce the instability of gob-side entry retaining with the character of soft rock comp- osite roof are put forward.


Sign in / Sign up

Export Citation Format

Share Document