Visual Communication Design Based on Collaborative Wireless Communication Video Transmission
With the development of wireless communication technology, video and multimedia have become an integral part of visual communication design. Designers want higher interactivity, diversity, humanization, and plurality of attributes in the process of visual communication. This makes the process of visual communication have high requirements for the quality and real-time data transmission. To address the problem of transmitting HD video in a heterogeneous wireless network with multiple concurrent streams to improve the transmission rate and thus enhance the user experience, with the optimization goal of minimizing the system transmission delay and the delay difference between paths, the video sender and receiver are jointly considered, and the video transmission rate and the cache size at the receiver are adaptively adjusted to improve the user experience, and a cooperative wireless communication video transmission based on the control model for video transmission based on cooperative wireless communication is established, and video streams with self-similarity and long correlation are studied based on Pareto distribution and P / P / l queuing theory, based on which an adaptive streaming decision method for video streams in heterogeneous wireless networks is proposed. Simulation results show that the proposed multistream concurrent adaptive transmission control method for heterogeneous networks is superior in terms of delay and packet loss rate compared with the general load balancing streaming decision method, in terms of transmission efficiency and accuracy.