scholarly journals Ergodicity and asymptotically almost periodic solutions of some differential equations

2001 ◽  
Vol 25 (12) ◽  
pp. 787-801 ◽  
Author(s):  
Chuanyi Zhang

Using ergodicity of functions, we prove the existence and uniqueness of (asymptotically) almost periodic solution for some nonlinear differential equations. As a consequence, we generalize a Massera’s result. A counterexample is given to show that the ergodic condition cannot be dropped.

2011 ◽  
Vol 11 (3) ◽  
Author(s):  
Moez Ayachi ◽  
Joël Blot ◽  
Philippe Cieutat

AbstractWe give sufficient conditions for the existence of almost periodic solutions of the secondorder differential equationu′′(t) = f (u(t)) + e(t)on a Hilbert space H, where the vector field f : H → H is monotone, continuous and the forcing term e : ℝ → H is almost periodic. Notably, we state a result of existence and uniqueness of the Besicovitch almost periodic solution, then we approximate this solution by a sequence of Bohr almost periodic solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Min Xu ◽  
Zengji Du ◽  
Kaige Zhuang

A class of neural networks system with neutral delays is investigated. The existence and uniqueness of almost periodic solution for the system are obtained by using fixed point theorem; we extend some results in the references.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Nguyen Thanh Lan

For the differential equation , on a Hilbert space , we find the necessary and sufficient conditions that the above-mentioned equation has a unique almost periodic solution. Some applications are also given.


2018 ◽  
Vol 5 (1) ◽  
pp. 127-137
Author(s):  
Khalil Ezzinbi ◽  
Samir Fatajou ◽  
Fatima Zohra Elamrani

AbstractIn thiswork,we provide sufficient conditions ensuring the existence and uniqueness of an Eberlein weakly almost periodic solutions for some semilinear integro-differential equations with infinite delay in Banach spaces. For illustration, we provide an example arising in viscoelasticity theory.


Sign in / Sign up

Export Citation Format

Share Document