scholarly journals The queue-length in GI/G/s queues

2000 ◽  
Vol 6 (1) ◽  
pp. 1-11
Author(s):  
Pierre Le Gall

The distribution of the queue-length in the stationary symmetrical GI/G/s queue is given with an application to the M/G/s queue, particularly in the case of the combination of several packet traffics, with various constant service times, to dimension the buffer capacity.

1973 ◽  
Vol 5 (1) ◽  
pp. 170-182 ◽  
Author(s):  
J. H. A. De Smit

The general theory for the many server queue due to Pollaczek (1961) and generalized by the author (de Smit (1973)) is applied to the system with exponential service times. In this way many explicit results are obtained for the distributions of characteristic quantities, such as the actual waiting time, the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. Most of these results are new, even for the special case of Poisson arrivals.


1990 ◽  
Vol 27 (02) ◽  
pp. 401-408
Author(s):  
Nico M. Van Dijk ◽  
Eric Smeitink

We study a queueing system with a finite number of input sources. Jobs are individually generated by a source but wait to be served in batches, during which the input of that source is stopped. The service speed of a server depends on the mode of other sources and thus includes interdependencies. The input and service times are allowed to be generally distributed. A classical example is a machine repair system where the machines are subject to shocks causing cumulative damage. A product-form expression is obtained for the steady state joint queue length distribution and shown to be insensitive (i.e. to depend on only mean input and service times). The result is of both practical and theoretical interest as an extension of more standard batch service systems.


1985 ◽  
Vol 22 (04) ◽  
pp. 893-902 ◽  
Author(s):  
Hermann Thorisson

We consider the stable k-server queue with non-stationary Poisson arrivals and i.i.d. service times and show that the non-time-homogeneous Markov process Zt = (the queue length and residual service times at time t) can be subordinated to a stable time-homogeneous regenerative process. As an application we show that if the system starts from given conditions at time s then the distribution of Zt stabilizes (but depends on t) as s tends backwards to –∞. Also moment and stochastic domination results are established for the delay and recurrence times of the regenerative process leading to results on uniform rates of convergence.


1996 ◽  
Vol 28 (01) ◽  
pp. 308-326 ◽  
Author(s):  
Masakiyo Miyazawa ◽  
Ronald W. Wolff

Batch departures arise in various applications of queues. In particular, such models have been studied recently in connection with production systems. For the most part, however, these models assume Poisson arrivals and exponential service times; little is known about them under more general settings. We consider how their stationary queue length distributions are affected by the distributions of interarrival times, service times and departing batch sizes of customers. Since this is not an easy problem even for single departure models, we first concentrate on single-node queues with a symmetric service discipline, which is known to have nice properties. We start with pre-emptive LIFO, a special case of the symmetric service discipline, and then consider symmetric queues with Poisson arrivals. Stability conditions and stationary queue length distributions are obtained for them, and several stochastic order relations are considered. For the symmetric queues and Poisson arrivals, we also discuss their network. Stability conditions and the stationary joint queue length distribution are obtained for this network.


1973 ◽  
Vol 5 (01) ◽  
pp. 170-182 ◽  
Author(s):  
J. H. A. De Smit

The general theory for the many server queue due to Pollaczek (1961) and generalized by the author (de Smit (1973)) is applied to the system with exponential service times. In this way many explicit results are obtained for the distributions of characteristic quantities, such as the actual waiting time, the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. Most of these results are new, even for the special case of Poisson arrivals.


Sign in / Sign up

Export Citation Format

Share Document