scholarly journals Minimal waiting times in static traffic control

2003 ◽  
Vol 7 (1) ◽  
pp. 11-28
Author(s):  
O. Moeschlin ◽  
C. Poppinga

The paper discusses the question of the optimal control of an unsymmetric bottleneck system with Poisson arrival processes having the minimization of the mean individual waiting time as objective. The setup allows the straightforward generalization to more complicated forms of traffic organization. The notion of the mean individual waiting time is based on a theorem of the Little type, which is derived by a strong law of large numbers. The proof makes use of McNeil's formula, which connects the expected total waiting time with the expected queue length.

Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 284
Author(s):  
John Gray ◽  
Andrew Vogt

The aim of this work is to study generalizations of the notion of the mean. Kolmogorov proposed a generalization based on an improper integral with a decay rate for the tail probabilities. This weak or Kolmogorov mean relates to the weak law of large numbers in the same way that the ordinary mean relates to the strong law. We propose a further generalization, also based on an improper integral, called the doubly-weak mean, applicable to heavy-tailed distributions such as the Cauchy distribution and the other symmetric stable distributions. We also consider generalizations arising from Abel–Feynman-type mollifiers that damp the behavior at infinity and alternative formulations of the mean in terms of the cumulative distribution and the characteristic function.


2015 ◽  
Vol 47 (01) ◽  
pp. 182-209
Author(s):  
Daniel Ahlberg

In this paper we consider first-passage percolation on certain one-dimensional periodic graphs, such as thenearest neighbour graph ford,K≥ 1. We expose a regenerative structure within the first-passage process, and use this structure to show that both length and weight of minimal-weight paths present a typical one-dimensional asymptotic behaviour. Apart from a strong law of large numbers, we derive a central limit theorem, a law of the iterated logarithm, and a Donsker theorem for these quantities. In addition, we prove that the mean and variance of the length and weight of minimizing paths are monotone in the distance between their end-points, and further show how the regenerative idea can be used to couple two first-passage processes to eventually coincide. Using this coupling we derive a 0–1 law.


2015 ◽  
Vol 47 (1) ◽  
pp. 182-209 ◽  
Author(s):  
Daniel Ahlberg

In this paper we consider first-passage percolation on certain one-dimensional periodic graphs, such as the nearest neighbour graph for d, K ≥ 1. We expose a regenerative structure within the first-passage process, and use this structure to show that both length and weight of minimal-weight paths present a typical one-dimensional asymptotic behaviour. Apart from a strong law of large numbers, we derive a central limit theorem, a law of the iterated logarithm, and a Donsker theorem for these quantities. In addition, we prove that the mean and variance of the length and weight of minimizing paths are monotone in the distance between their end-points, and further show how the regenerative idea can be used to couple two first-passage processes to eventually coincide. Using this coupling we derive a 0–1 law.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2282
Author(s):  
Saulius Minkevičius ◽  
Igor Katin ◽  
Joana Katina ◽  
Irina Vinogradova-Zinkevič

The structure of this work in the field of queuing theory consists of two stages. The first stage presents Little’s Law in Multiphase Systems (MSs). To obtain this result, the Strong Law of Large Numbers (SLLN)-type theorems for the most important MS probability characteristics (i.e., queue length of jobs and virtual waiting time of a job) are proven. The next stage of the work is to verify the result obtained in the first stage.


Author(s):  
John E. Gray ◽  
Andrew Vogt

The aim of this work is to study generalizations of the notion of mean. Kolmogorov proposed a generalization based on an improper integral with a decay rate for the tail probabilities. This weak or Kolmogorov mean relates to the Weak Law of Large Numbers in the same way that the ordinary mean relates to the Strong Law. We propose a further generalization, also based on an improper integral, called the doubly weak mean, applicable to heavy-tailed distributions such as the Cauchy distribution and the other symmetric stable distributions, We also consider generalizations arising from Abel-Feynman type mollifiers that damp the behavior at infinity and alternative formulations of the mean in terms of the cumulative distribution and the characteristic function.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Xiaochen Ma ◽  
Qunying Wu

In this article, we research some conditions for strong law of large numbers (SLLNs) for weighted sums of extended negatively dependent (END) random variables under sublinear expectation space. Our consequences contain the Kolmogorov strong law of large numbers and the Marcinkiewicz strong law of large numbers for weighted sums of extended negatively dependent random variables. Furthermore, our results extend strong law of large numbers for some sequences of random variables from the traditional probability space to the sublinear expectation space context.


Sign in / Sign up

Export Citation Format

Share Document