scholarly journals Immune Stimulatory Receptor CD40 Is Required for T-Cell Suppression and T Regulatory Cell Activation Mediated by Myeloid-Derived Suppressor Cells in Cancer

2009 ◽  
Vol 70 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Ping-Ying Pan ◽  
Ge Ma ◽  
Kaare J. Weber ◽  
Junko Ozao-Choy ◽  
George Wang ◽  
...  
2013 ◽  
Vol 1 (Suppl 1) ◽  
pp. P193
Author(s):  
Patrick L Raber ◽  
Paul Thevenot ◽  
Rosa Sierra ◽  
Dorota Wyczechowska ◽  
Maria E Ramirez ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2794-2794
Author(s):  
Els Van Valckenborgh ◽  
Jo Van Ginderachter ◽  
Kiavash Movahedi ◽  
Eline Menu ◽  
Karin Vanderkerken

Abstract Abstract 2794 Poster Board II-770 Myeloid-derived suppressor cells (MDSCs) are a heterogeneous mix of myeloid cells in different maturation stages generated in the bone marrow. The role of MDSCs in cancer is to suppress T-cell responses, thereby likely regulating tumor progression. In mice, MDSCs are identified by the expression of the surface markers CD11b and Gr-1. Recently, Ly6G+ granulocytic (PMN-MDSC) and Ly6G− monocytic (MO-MDSC) subsets could be distinguished (Movahedi et al. Blood 2008, 111:4233-44). In multiple myeloma patients, the immune function is impaired and this is caused by an immunologically hostile microenvironment and cellular defects, such as decreased numbers of immune cells, and DC or T-cell dysfunction. However, the role of MDSCs in immune suppression in multiple myeloma is not yet described. In this study, we investigated the immunosuppressive activity and mechanism of MDSC subsets in the syngeneic and immunocompetent 5TMM mouse model (5T2 and 5T33 models). In first instance, CD11b+Ly6G− and CD11b+Ly6G+ lineage-committed myeloid MDSC subsets were detected in 5TMM-diseased bone marrow by flow cytometry. These subsets were purified via MACS from the bone marrow of naïve and 5TMM tumor-bearing mice, and analyzed for T-cell suppressive activity. Hereto, CD8+ TCR-transgenic OT-1 splenocytes were stimulated with ovalbumin protein in the presence of purified MDSC subsets, after which T-cell proliferation was measured via 3H-thymidine incorporation. Both MDSC subsets from 5TMM bone marrow were able to suppress antigen-specific T-cell responses at a higher level compared to purified MDSC subsets from normal bone marrow. On average, Ly6G− MDSCs were more suppressive than Ly6G+ MDSCs. The 5T2MM model has a tumor take of approximately 12 weeks. Three weeks after intravenous inoculation of the tumor cells, the suppressive effect of the myeloid subsets was already observed (while the plasmacytosis in the BM was very low and no detectable serum M spike was observed), indicating that T-cell suppression is an early event in MM development. To unravel the suppressive mechanism of the MDSC subsets, inhibitors were used in ovalbumin-stimulated cocultures. Ly6G− MDSC-mediated suppression was partially reversed by the iNOS inhibitor L-NMMA and the COX-2 inhibitor sc-791, both of which lower the NO concentration in culture. In contrast, superoxide dismutase and especially catalase enhance NO concentrations, resulting in enhanced T-cell suppression. None of these inhibitors had any impact on the Ly6G+ MDSC-mediated suppression. In conclusion, these data reveal the presence of MDSCs as a novel immune suppressive strategy employed by multiple myeloma cells in the bone marrow, already occurring early in the disease process. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 3079-3079
Author(s):  
Rachel A. Burga ◽  
Mitchell Thorn ◽  
Cang T. Nguyen ◽  
Lauren Licata ◽  
N. Joseph Espat ◽  
...  

3079 Background: Immunotherapy for colorectal cancer liver metastases (CRCLM) is limited by the intrahepatic immunosuppressive environment mediated in part by myeloid derived suppressor cells (MDSC), which expand in response to tumor. T cell suppression can be mediated by programmed death ligand-1 (PD-L1, CD274) on MDSC binding to programmed death-1 (PD-1, CD279) on T cells. We hypothesize blocking PD-L1 will improve adoptive cellular therapy efficacy for CRCLM through inhibition of MDSC-mediated T cell suppression. Methods: “Designer” T cells (dTc) were produced from activated murine splenocytes transduced with chimeric antigen receptor (CAR) specific for CEA. C57BL/6 mice were injected with CEA+ MC38 tumor cells via spleen, and liver MDSC (CD11b+Gr1+) were purified with immunomagnetic beads after two weeks. MDSC were co-cultured with stimulated dTc with or without in vitro PD-L1 blockade. Results: MDSC expanded 2.4-fold in response to CRCLM, and expressed high levels of PD-L1 (63.8% PD-L1+). PD-L1 was equally expressed on both monocytic (CD11b+Ly6G-Ly6C+) and granulocytic (CD11b+Ly6G+) MDSC subsets (43.6% PD-L1+ and 27.9% PD-L1+, respectively). Expression of related ligand, PD-L2 was found to be negligible in both subsets. The cognate inhibitory receptor, PD-1, was expressed on dTc (23.8% PD-1+) and native T cells (37.3% PD-1+). Increasing endogenous T cell expression of PD-1 significantly correlated with MDSC expansion (r=0.9774, p<0.0001) in response to CRCLM. Co-culture of dTc with MDSC demonstrated the suppressive effect of MDSC on dTc proliferation which was abrogated with in vitro targeting of PD-L1. The percentage of dTc proliferating in the presence of CEA+ tumor decreased from 72.2% to 29.3% (p<0.001) with the addition of MDSC, and immunosuppression was reversed with blockade of PD-L1, which resulted in a 1.6-fold increase in dTc proliferation (p=0.01 ). Conclusions: Liver MDSC expand in the presence of CRCLM and mediate suppression of anti-CEA dTc via PD-L1. Our results indicate that blockade of PD-L1:PD-1 engagement is a viable strategy for enhancing the efficacy of adoptive cell therapy for liver metastases.


2003 ◽  
Vol 10 (1) ◽  
pp. 61-65 ◽  
Author(s):  
L. Frasca ◽  
C. Scottà ◽  
G. Lombardi ◽  
E. Piccolella

T cell suppression is a well established phenomenon, but the mechanisms involved are still a matter of debate. Mouse anergic T cells were shown to suppress responder T cell activation by inhibiting the antigen presenting function of DC. In the present work we studied the effects of co-culturing human anergic CD4+T cells with autologous dendritic cells (DC) at different stages of maturation. Either DC maturation or survival, depending on whether immature or mature DC where used as APC, was impaired in the presence of anergic cells. Indeed, MHC and costimulatory molecule up-regulation was inhibited in immature DC, whereas apoptotic phenomena were favored in mature DC and consequently in responder T cells. Defective ligation of CD40 by CD40L (CD154) was responsible for CD95-mediated and spontaneous apoptosis of DC as well as for a failure of their maturation process. These findings indicate that lack of activation of CD40 on DC by CD40L-defective anergic cells might be the primary event involved in T cell suppression and support the role of CD40 signaling in regulating both activation and survival of DC.


2009 ◽  
Vol 70 (1) ◽  
pp. 68-77 ◽  
Author(s):  
Minu K. Srivastava ◽  
Pratima Sinha ◽  
Virginia K. Clements ◽  
Paulo Rodriguez ◽  
Suzanne Ostrand-Rosenberg

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi92-vi93
Author(s):  
Gregory Takacs ◽  
Christian Kreiger ◽  
Defang Luo ◽  
Joseph Flores-Toro ◽  
Loic Deleyrolle ◽  
...  

Abstract INTRODUCTION Mounting evidence suggests infiltrating immune-suppressive cells contribute to immune checkpoint inhibitor resistance and poor survival in Glioblastoma (GBM) patients. We have previously shown glioma-associated monocytic-myeloid derived suppressor cells (M-MDSCs) express chemokine receptors CCR2 and CX3CR1. Genetic and pharmacologic targeting of CCR2 promoted sequestration of M-MDSCs in the bone marrow and, in combination with PD-1 blockade, slowed progression of KR158 and 005GSC murine gliomas. This combination treatment also enhanced infiltration of IFNg-producing T cells that were less exhausted. Although CCR2+/CX3CR1+ cells display surface markers indicative of bone marrow-derived M-MDSCs, additional studies are needed to formally establish the source of these cells and to determine if they exhibit an immune-suppressive phenotype as well as migrate to the CCR2 ligands, CCL2 and/or CCL7. OBJECTIVE Evaluate the source, migration, and immune suppressive function of CCR2+/CX3CR1+ myeloid cells from glioma bearing mice. METHODS To identify the source of CCR2+/CX3CR1+ myeloid cells, chimeric wild type mice harboring bone marrow cells from transgenic CCR2WT/RFP/CX3CR1WT/GFP mice were generated. CCR2+/CX3CR1+ cells were enriched from bone marrow obtained from either wild-type or CCR2WT/RFP/CX3CR1WT/GFP naïve and glioma-bearing mice in order to evaluate their immune suppressive phenotype and ability to migrate to CCL2 and CCL7. RESULTS CCR2+/CX3CR1+ cells are present in glioma isolates from chimeric mice, indicative of a bone marrow-derived cell population, and are detectable within the tumor microenvironment as early as 3 days post orthotopic implantation of KR158 cells; these cells accumulate as tumors increase in size (r=0.7605, p=0.007). CCR2+/CX3CR1+ M-MDSCs isolated from the bone marrow of tumor bearing mice suppress CD8+ T cell production of IFNg and migrate to CCL2 more efficiently than CCL7. CONCLUSION CCR2+/CX3CR1+ cells from glioma bearing mice are derived from the bone marrow and represent an immune suppressive population that migrates to CCL2.


Sign in / Sign up

Export Citation Format

Share Document