scholarly journals Akt-Dependent Proapoptotic Effects of Dietary Restriction on Late-Stage Management of a Phosphatase and Tensin Homologue/Tuberous Sclerosis Complex 2–Deficient Mouse Astrocytoma

2008 ◽  
Vol 14 (23) ◽  
pp. 7751-7762 ◽  
Author(s):  
Jeremy Marsh ◽  
Purna Mukherjee ◽  
Thomas N. Seyfried
2003 ◽  
Vol 31 (3) ◽  
pp. 584-586 ◽  
Author(s):  
C.J. Potter ◽  
L.G. Pedraza ◽  
H. Huang ◽  
T. Xu

We have identified three groups of growth-constraint genes using mosaic genetic screens in Drosophila melanogaster, including PTEN (phosphatase and tensin homologue deleted on chromosome 10), and the tuberous sclerosis complex (TSC) genes, Tsc1 and Tsc2. Our studies show that all three groups of genes participate in mechanisms that regulate organ and organism size in animals. We propose that mechanisms of organ size control are critical targets for diseases, such as tumorigenesis, which require an increase in tissue size and total mass, and for evolutionary events that alter the size of organisms. Using genetic and biochemical methods, we have shown that Tsc1 and Tsc2 function in the insulin/phosphoinositide 3-kinase (PI3K)/Akt pathway. We have shown that Akt regulates the Tsc1–Tsc2 complex by directly phosphorylating Tsc2. We have shown further that S6 kinase (S6K) is a downstream component of the PI3K/Akt/TSC pathway and reduction of S6K activity can block TSC defects. Recent studies from many laboratories have now confirmed our findings in mice, rats and human patients, and have shown that drugs that antagonize S6K activities, such as rapamycin, diminish tumours in TSC-deficient mice and rats. Clinical trials based on these findings have begun. Given that other components of the pathway, such as PTEN, are also mutated in a large number of cancer patients and that these components regulate intracellular insulin signalling, therapeutics based on the knowledge of the pathway could have effects beyond the TSC patient population.


2017 ◽  
Vol 48 (S 01) ◽  
pp. S1-S45
Author(s):  
G. Wiegand ◽  
T. Polster ◽  
C. Hertzberg ◽  
A. Wiemer-Kruel ◽  
J. French ◽  
...  

2017 ◽  
Vol 48 (S 01) ◽  
pp. S1-S45
Author(s):  
T. Stapper ◽  
D. Valcheva ◽  
T. Höll ◽  
T. Rosenbaum

2006 ◽  
Vol 37 (03) ◽  
Author(s):  
C Krahn-Peper ◽  
IEB Tuxhorn ◽  
K Ahlbory ◽  
F Behne ◽  
H Pannek

2020 ◽  
Vol 7 (3) ◽  
pp. 5-19
Author(s):  
Nikhil Nair ◽  
Ronith Chakraborty ◽  
Zubin Mahajan ◽  
Aditya Sharma ◽  
Sidarth Sethi ◽  
...  

Tuberous sclerosis complex (TSC) is a genetic condition caused by a mutation in either the TSC1 or TSC2 gene. Disruption of either of these genes leads to impaired production of hamartin or tuberin proteins, leading to the manifestation of skin lesions, tumors and seizures. TSC can manifests in multiple organ systems with the cutaneous and renal systems being the most commonly affected. These manifestations can secondarily lead to the development of hypertension, chronic kidney disease, and neurocognitive declines. The renal pathologies most commonly seen in TSC are angiomyolipoma, renal cysts and less commonly, oncocytomas. In this review, we highlight the current understanding on the renal manifestations of TSC along with current diagnosis and treatment guidelines.


2007 ◽  
Vol 56 (2) ◽  
Author(s):  
NC Iheonunekwu ◽  
TM Ibrahim ◽  
BD Crosdale ◽  
RH Gangappa

Sign in / Sign up

Export Citation Format

Share Document