A High-Content Screen for C/EBPα Expression Identifies Novel Therapeutic Agents in Dedifferentiated Liposarcoma

2021 ◽  
pp. clincanres.2486.2019
Author(s):  
Christina V. Angeles ◽  
Ana Velez-Rosborough ◽  
Jordan Rios ◽  
Bernadette Laxa ◽  
David Shum ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1609
Author(s):  
Lutfun Nahar ◽  
Shaymaa Al-Majmaie ◽  
Afaf Al-Groshi ◽  
Azhar Rasul ◽  
Satyajit D. Sarker

Dihydrofuranocoumarin, chalepin (1) and furanocoumarin, chalepensin (2) are 3-prenylated bioactive coumarins, first isolated from the well-known medicinal plant Ruta chalepensis L. (Fam: Rutaceae) but also distributed in various species of the genera Boenminghausenia, Clausena and Ruta. The distribution of these compounds appears to be restricted to the plants of the family Rutaceae. To date, there have been a considerable number of bioactivity studies performed on coumarins 1 and 2, which include their anticancer, antidiabetic, antifertility, antimicrobial, antiplatelet aggregation, antiprotozoal, antiviral and calcium antagonistic properties. This review article presents a critical appraisal of publications on bioactivity of these 3-prenylated coumarins in the light of their feasibility as novel therapeutic agents and investigate their natural distribution in the plant kingdom, as well as a plausible biosynthetic route.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1781
Author(s):  
Gustavo A. Arias-Pinilla ◽  
Helmout Modjtahedi

Pancreatic cancer remains as one of the most aggressive cancer types. In the absence of reliable biomarkers for its early detection and more effective therapeutic interventions, pancreatic cancer is projected to become the second leading cause of cancer death in the Western world in the next decade. Therefore, it is essential to discover novel therapeutic targets and to develop more effective and pancreatic cancer-specific therapeutic agents. To date, 45 monoclonal antibodies (mAbs) have been approved for the treatment of patients with a wide range of cancers; however, none has yet been approved for pancreatic cancer. In this comprehensive review, we discuss the FDA approved anticancer mAb-based drugs, the results of preclinical studies and clinical trials with mAbs in pancreatic cancer and the factors contributing to the poor response to antibody therapy (e.g. tumour heterogeneity, desmoplastic stroma). MAb technology is an excellent tool for studying the complex biology of pancreatic cancer, to discover novel therapeutic targets and to develop various forms of antibody-based therapeutic agents and companion diagnostic tests for the selection of patients who are more likely to benefit from such therapy. These should result in the approval and routine use of antibody-based agents for the treatment of pancreatic cancer patients in the future.


Author(s):  
Bennett O.V. Shum ◽  
Michael S. Rolph ◽  
William A. Sewell

Asthma is a chronic inflammatory disease of the airways, involving recurrent episodes of airway obstruction and wheezing. A common pathological feature in asthma is the presence of a characteristic allergic airway inflammatory response involving extensive leukocyte infiltration, mucus overproduction and airway hyper-reactivity. The pathogenesis of allergic airway inflammation is complex, involving multiple cell types such as T helper 2 cells, regulatory T cells, eosinophils, dendritic cells, mast cells, and parenchymal cells of the lung. The cellular response in allergic airway inflammation is controlled by a broad range of bioactive mediators, including IgE, cytokines and chemokines. The asthmatic allergic inflammatory response has been a particular focus of efforts to develop novel therapeutic agents. Animal models are widely used to investigate inflammatory mechanisms. Although these models are not perfect replicas of clinical asthma, such studies have led to the development of numerous novel therapeutic agents, of which some have already been successful in clinical trials.


Sign in / Sign up

Export Citation Format

Share Document