scholarly journals Abstract LB-029: Identification of predictive genetic signatures of Cytarabine responsiveness in acute myeloid leukemia using a novel 3D translational culture model of primary bone marrow

Author(s):  
Haiyan Xu ◽  
Eric S. Muise ◽  
Sarah Javaid ◽  
Lan Chen ◽  
Razvan Cristescu ◽  
...  
2020 ◽  
Vol 12 (546) ◽  
pp. eaaz0463 ◽  
Author(s):  
Jayakumar Vadakekolathu ◽  
Mark D. Minden ◽  
Tressa Hood ◽  
Sarah E. Church ◽  
Stephen Reeder ◽  
...  

Acute myeloid leukemia (AML) is a molecularly and clinically heterogeneous hematological malignancy. Although immunotherapy may be an attractive modality to exploit in patients with AML, the ability to predict the groups of patients and the types of cancer that will respond to immune targeting remains limited. This study dissected the complexity of the immune architecture of AML at high resolution and assessed its influence on therapeutic response. Using 442 primary bone marrow samples from three independent cohorts of children and adults with AML, we defined immune-infiltrated and immune-depleted disease classes and revealed critical differences in immune gene expression across age groups and molecular disease subtypes. Interferon (IFN)–γ–related mRNA profiles were predictive for both chemotherapy resistance and response of primary refractory/relapsed AML to flotetuzumab immunotherapy. Our compendium of microenvironmental gene and protein profiles provides insights into the immuno-biology of AML and could inform the delivery of personalized immunotherapies to IFN-γ–dominant AML subtypes.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 224-224
Author(s):  
Jing Qi ◽  
Sandeep Singh ◽  
Qi Cai ◽  
Ling Li ◽  
Hongjun Liu ◽  
...  

Abstract Chromosomal inversion inv(16)(p13.1q22) which leads to the fusion of the transcription factor gene CBFb and the MYH11 gene, occurs in over 8% of acute myeloid leukemia (AML) cases. The fusion product CBFβ-SMMHC (CM) inhibits differentiation of hematopoietic stem and progenitor cells (HSPCs) and creates pre-leukemic populations predisposed to acute myeloid leukemia (AML) transformation. The mutations of tumor suppressor p53 occur in approximately half of all cases of human cancer, but TP53 mutations are relatively rare in inv(16) AML. We have previously shown that CM expression leads to reduced acetylation of p53 and impaired p53 target gene activation through formation of aberrant protein complex with p53 and HDAC8 (Blood, 2012,120: A772.). Here, we showed that CM interacts with p53 both in CM transformed mouse primary bone marrow cells as well as in AML stem and progenitor cells from inv(16) patients. When HDAC8 selective pharmacological inhibitor 22d directed against its catalytic sites (ChemMedChem 2012, 7:10, 1815-24;) were used to treat inv(16) mouse primary bone marrow progenitor cells and inv(16)+ CD34+ stem progenitor cells from patients, Ac-p53 levels were remarkably increased as shown by western blot. We further assessed the p53 target genes expression after HDAC8 inhibitor 22d treatment by qRT-PCR assay in inv(16)+ CD34+ stem progenitor cells (n=8), and observed variable levels of activation in p53 targets (Fold activation: p21:2.25-fold, hdm2:1.17-fold, 14-3-3σ: 3.12-fold, puma: 2.39-fold), indicating p53 was re-activated. Similar results were also shown in CM transformed mouse bone marrow progenitor cells. Importantly, we found that 22d treatment significantly inhibit the growth of inv(16)+ AML CD34+ cells (n=9) rather than normal CD34+ cells (n=7) , (AML IC50= 6.509 μM, vs Normal cells IC50=13.83 μM, p=0.0003). Meanwhile, 22d selectively induces apoptosis of inv(16)+ AML stem and progenitor cells while sparing normal HSPCs (AML LD50= 10.24 μM, vs NL LD50= 46.36 μM, p=0.001). To evaluate whether the effect of HDAC8i is mediated by p53, we knocked down p53 with a lentiviral vector expressing shRNA against p53 (or non-silencing shRNA) in AML CD34+ cells, and treated the cells with HDAC8 inhibitor 22d (5-20 µM). We showed that despite the inter-sample variability, knocking down p53 expression in all AML samples tested (n=3) led to reduced HDAC8i-induced apoptosis, suggesting that p53 contributes to the apoptosis effect induced by HDAC8i (22d) in inv(16)+ AML cells. Importantly, by taking advantage of our conditional knock-in mouse model (Cbfb56M/+/Mx1-Cre), which develops AML under induced expression of CBFß-SMMHC (Cancer Cell, 2006, 9:1, 57-68), we were able to perform the ex vivo treatment assay by treating primary leukemic cells (marked with dTomato) with either DMSO (as vehicle control) or with HDAC8 inhibitor 22d (10μM) for 48h, followed by transplantion into congenic mice (control group n=8, treatment group n=7). We observed reduced short-term engraftment of leukemic cells that are treated with 22d (10 μM) at 4 weeks post-transplantation in the peripheral blood (Donor cell%: control group=5.99%, treatment group=0.178%, P=0.0093). Interestingly, engraftment of cord blood CD34+ cells at 16 weeks post-bone marrow transplantation was not reduced after treatment with 22d (10 μM) (human CD45+ %: control=66.2% versus treatment=63.4%, p=0.9), indicating the effect by HDAC8 inhibition is selective for leukemic cells. In conclusion, we have identified a novel mechanism whereby CBFβ-SMMHC inhibits p53 fucntion, and may further implicate inhibition of HDAC8 as a promising approach to selectively target inv(16)+ AML stem and progenitor cells. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Jayakumar Vadakekolathu ◽  
Mark D. Minden ◽  
Tressa Hood ◽  
Sarah E. Church ◽  
Stephen Reeder ◽  
...  

AbstractThis study dissected the complexity of the immune architecture of acute myeloid leukemia (AML) at high resolution and assessed its influence on therapeutic response. Using 387 primary bone marrow samples from three discovery cohorts of children and adults with AML, we defined immune-infiltrated and immune-depleted disease subtypes and unraveled critical differences in immune gene expression across age groups and disease stages. Importantly, interferon (IFN)-γ-related mRNA profiles were predictive for both chemotherapy resistance and response of primary refractory/relapsed AML to flotetuzumab immunotherapy. Our compendium of microenvironmental gene and protein profiles sheds novel insights into the immuno-biology of AML and will inform the delivery of personalized immunotherapies to IFN-γ-dominant AML subtypes.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiaojun Xu ◽  
Yongbin Ye ◽  
Xiaobo Wang ◽  
Bo Lu ◽  
Ziwen Guo ◽  
...  

Abstract Emerging evidence shows that histone modification and its related regulators are involved in the progression and chemoresistance of multiple tumors including acute myeloid leukemia cells (AML). Our present study found that the expression of histone lysine demethylase Jumonji domain containing-3 (JMJD3) was increased in AML cells as compared with that in human primary bone marrow (HPBM) cells. Knockdown of JMJD3 can decrease the proliferation of AML cells and increase the chemosensitivity of daunorubicin (DNR) and cytarabine (Ara-C). By screening the expression of cytokines involved in AML progression, we found that knockdown of JMJD3 can inhibit the expression of interleukin-6 (IL-6). Recombinant IL-6 (rIL-6) can attenuate si-JMJD3-suppressed proliferation of AML cells. Mechanistically, JMJD3 can positively regulate the promoter activity and transcription of IL-6 mRNA, while had no effect on its mRNA stability. Further, JMJD3 can regulate the expression of p65, which can directly bind with promoter of IL-6 to increase its transcription. Over expression of p65 significantly attenuated si-JMJD3-suppressed expression of IL-6. Collectively, we revealed that JMJD3 can regulate the proliferation and chemosensitivity of AML cells via upregulation of IL-6. It suggested that JMJD3 might be a potential therapy target for AML treatment.


2019 ◽  
Vol 18 (14) ◽  
pp. 1936-1951 ◽  
Author(s):  
Raghav Dogra ◽  
Rohit Bhatia ◽  
Ravi Shankar ◽  
Parveen Bansal ◽  
Ravindra K. Rawal

Background: Acute myeloid leukemia is the collective name for different types of leukemias of myeloid origin affecting blood and bone marrow. The overproduction of immature myeloblasts (white blood cells) is the characteristic feature of AML, thus flooding the bone marrow and reducing its capacity to produce normal blood cells. USFDA on August 1, 2017, approved a drug named Enasidenib formerly known as AG-221 which is being marketed under the name Idhifa to treat R/R AML with IDH2 mutation. The present review depicts the broad profile of enasidenib including various aspects of chemistry, preclinical, clinical studies, pharmacokinetics, mode of action and toxicity studies. Methods: Various reports and research articles have been referred to summarize different aspects related to chemistry and pharmacokinetics of enasidenib. Clinical data was collected from various recently published clinical reports including clinical trial outcomes. Result: The various findings of enasidenib revealed that it has been designed to allosterically inhibit mutated IDH2 to treat R/R AML patients. It has also presented good safety and efficacy profile along with 9.3 months overall survival rates of patients in which disease has relapsed. The drug is still under study either in combination or solely to treat hematological malignancies. Molecular modeling studies revealed that enasidenib binds to its target through hydrophobic interaction and hydrogen bonding inside the binding pocket. Enasidenib is found to be associated with certain adverse effects like elevated bilirubin level, diarrhea, differentiation syndrome, decreased potassium and calcium levels, etc. Conclusion: Enasidenib or AG-221was introduced by FDA as an anticancer agent which was developed as a first in class, a selective allosteric inhibitor of the tumor target i.e. IDH2 for Relapsed or Refractory AML. Phase 1/2 clinical trial of Enasidenib resulted in the overall survival rate of 40.3% with CR of 19.3%. Phase III trial on the Enasidenib is still under process along with another trial to test its potency against other cell lines. Edasidenib is associated with certain adverse effects, which can be reduced by investigators by designing its newer derivatives on the basis of SAR studies. Hence, it may come in the light as a potent lead entity for anticancer treatment in the coming years.


2021 ◽  
Vol 22 (13) ◽  
pp. 6857
Author(s):  
Samantha Bruno ◽  
Manuela Mancini ◽  
Sara De Santis ◽  
Cecilia Monaldi ◽  
Michele Cavo ◽  
...  

Acute myeloid leukemia (AML) is a hematologic malignancy caused by a wide range of alterations responsible for a high grade of heterogeneity among patients. Several studies have demonstrated that the hypoxic bone marrow microenvironment (BMM) plays a crucial role in AML pathogenesis and therapy response. This review article summarizes the current literature regarding the effects of the dynamic crosstalk between leukemic stem cells (LSCs) and hypoxic BMM. The interaction between LSCs and hypoxic BMM regulates fundamental cell fate decisions, including survival, self-renewal, and proliferation capacity as a consequence of genetic, transcriptional, and metabolic adaptation of LSCs mediated by hypoxia-inducible factors (HIFs). HIF-1α and some of their targets have been associated with poor prognosis in AML. It has been demonstrated that the hypoxic BMM creates a protective niche that mediates resistance to therapy. Therefore, we also highlight how hypoxia hallmarks might be targeted in the future to hit the leukemic population to improve AML patient outcomes.


Sign in / Sign up

Export Citation Format

Share Document