Abstract PR12: Using whole exome sequencing of archived FFPE tissue to characterize the mutational landscape of prostate cancer in Nigerian men

Author(s):  
◽  
Jason White ◽  
Wei Tang ◽  
Stefan Ambs ◽  
Solomon Rotimi ◽  
...  
Data in Brief ◽  
2019 ◽  
Vol 25 ◽  
pp. 104022
Author(s):  
A.S. Nikitina ◽  
E.I. Sharova ◽  
S.A. Danilenko ◽  
O.V. Selezneva ◽  
L.O. Skorodumova ◽  
...  

2020 ◽  
Vol 21 (2) ◽  
pp. 140-148
Author(s):  
Lifang Hao ◽  
Hui Li ◽  
Su Zhang ◽  
Yanlei Yang ◽  
Zhenzhen Xu ◽  
...  

Background: Castration-resistant Prostate Cancer (CRPC) is a fatal disease with rapid growth. The malignancy usually presents with metastasis and poor prognosis, and causes 100% mortality. Therefore, the treatment of CRPC is extremely challenging, and its pathogenesis need to be elucidated urgently. Objective: The high throughput sequencing technology was used to sequence the whole exome associated with CRPC, to explore the molecular mechanism of CRPC, and to find the potential therapeutic targets. Methods: We performed whole-exome sequencing of FFPE tissue from 11 Chinese adult male patients. Genomic DNA was fragmented and enriched for whole-exome sequencing using the QiAamp DNA FFPE Tissue KIT, sequenced on an Illumina HiSeq2000 platform, and the relevant genes were analyzed using biological information. Finally, immunohistochemistry method was used to detect the phosphorylation level of LATS1 in CRPC tissues of MST1 mutant and non-mutant patients. Results: We have screened 85 significant mutant genes with relatively high mutation rates of TP53, AR, KMT2, DMAPK1, PIK3R1, SH2B3, WHSC1, KMT2D, MST1 and MAPK1. We first found that MST1 has multiple mutations in CRPC patients, and the MST1 plays an important role in the Hippo pathway. Immunohistochemistry results showed that the phosphorylation level of LATS1 in the mutant patients was significantly lower than that in the non-mutant patients. Conclusion: We speculate that MST1 would be a new potential target for the treatment of CRPC by regulating Hippo signaling pathway. The results provided an important clue to the molecular mechanism of CRPC.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 726-726 ◽  
Author(s):  
Eileen M Boyle ◽  
Brian A Walker ◽  
Dorota Rowczienio ◽  
Christopher P Wardell ◽  
Alexander Murison ◽  
...  

Abstract Introduction: Systemic light chain amyloidosis (AL) is characterized by the deposition of immunoglobulin light chains as amyloid fibrils in different organs, where they form toxic protein aggregates. The underlying disease is a plasma cell disorder, likely a monoclonal gammopathy, but limited data are available on the biology of the plasma cell clone underlying AL and existing studies have concentrated on chromosomal abnormalities. We report the final findings of the first exome sequencing to define the plasma cell signature in AL and compared this to other mature lymphoid malignancies. Methods: Whole exome sequencing was performed on 27 newly diagnosed, histologically proven amyloidosis patients. DNA was extracted from peripheral blood and CD138+ plasma cells and whole exome sequencing was performed using SureSelect (Agilent). In addition to capturing the exome, extra baits were added covering the IGH, IGK, IGL and MYC loci in order to determine the breakpoints associated with translocations in these genes. Tumour and germline DNA were sequenced and data processed to generate copy number, acquired variants and translocation breakpoints in the tumour. Patient demographics: The median age at diagnosis was 69 (range: 41-81) years old. All cases were histologically proven, newly diagnosed AL amyloid. 74% were lambda restricted and 26% kappa with median respective median involved sFLC were 180 mg/L (range: 58.9-986 mg/L) and 730 mg/L (609-3190 mg/L) respectively. The median plasmocytosis was 17.5% (range: 2-90%). 78% of them had evidence of heart involvement, 70% had renal involvement and 33% had liver involvement. Mutation load: The median number of acquired non-synonymous variants per sample was 65 (range 7-285) with 40 (4-251) potentially disease causing variants per sample. Mutational landscape: Although no genes were significantly mutated, the genes closest to significance were NRAS, PIM1, and HIST1H3F. We identified 2 cases with NRAS mutations in the codon 61 (Q61R and Q61H) but no KRAS mutations were seen. Interestingly, there were mutations in some of the significantly mutated genes in myeloma such as EGR1 (Q95R), DIS3 (M505L and D317E) and TRAF3 (splice site). One patient bore a CARD11 (R1077W) mutation, more commonly seen in non-Hodgkin’s lymphoma. Although 22% of our samples had a t(11;14) translocations we did not observe any mutations in CCND1. We identified a t(1;14) (p36;q32) previously described in non-hodgkin lymphoma in one patient. We also identified a Myc translocation in a patient who met the criteria for smouldering myeloma. As previously described in myeloma, both DIS3 mutants occurred in patients with a del(13q). Finally, there was no APOBEC signature in our small samples cohort butwe identified an unspecific mutational signature that was related to age. When comparing the spectrum of mutated genes in both amyloidosis (n=27) and previously sequenced myeloma samples (n=463), we identified 948 genes in common between myeloma and amyloidosis. Four hundred and forty two genes were only mutated in amyloidosis most of them being in housekeeping genes. The clustering of the most frequent and significantly mutated genes in each B-cell malignancy, suggests amyloidosis resembles myeloma and MGUS more than other B-cell malignancies. Discussion: The mutational landscape of amyloidosis resembles myeloma with no disease defining mutations but a variety of mutations occurring in different pathways such as RAS and NF-kB. Two samples had an NRAS mutation, which is a known driver mutation also found in MM. We identified a non-canonical IgH translocation that is a rare event in myeloma. There was little overlap in mutated genes indicating a diverse spectrum of mutations, which is in common with MM. Given the diverse mutational spectrum it will be necessary to study a large cohort to fully understand the genetic complexity of the disease. Conclusion: We conclude that exome sequencing identifies a genetic signature of AL amyloidosis which is similar to other plasma cell disorders in terms of translocations and non-synonymous mutations. Disclosures Walker: Onyx Pharmaceuticals: Consultancy, Honoraria.


2014 ◽  
Vol 134 (1) ◽  
pp. 213-220 ◽  
Author(s):  
Shyam S. Jayaraman ◽  
David J. Rayhan ◽  
Salar Hazany ◽  
Michael S. Kolodney

2016 ◽  
Vol 113 (43) ◽  
pp. 12238-12243 ◽  
Author(s):  
Siming Zhao ◽  
Stefania Bellone ◽  
Salvatore Lopez ◽  
Durga Thakral ◽  
Carlton Schwab ◽  
...  

Carcinosarcomas (CSs) of the uterus and ovary are highly aggressive neoplasms containing both carcinomatous and sarcomatous elements. We analyzed the mutational landscape of 68 uterine and ovarian CSs by whole-exome sequencing. We also performed multiregion whole-exome sequencing comprising two carcinoma and sarcoma samples from six tumors to resolve their evolutionary histories. The results demonstrated that carcinomatous and sarcomatous elements derive from a common precursor having mutations typical of carcinomas. In addition to mutations in cancer genes previously identified in uterine and ovarian carcinomas such as TP53, PIK3CA, PPP2R1A, KRAS, PTEN, CHD4, and BCOR, we found an excess of mutations in genes encoding histone H2A and H2B, as well as significant amplification of the segment of chromosome 6p harboring the histone gene cluster containing these genes. We also found frequent deletions of the genes TP53 and MBD3 (a member with CHD4 of the nucleosome remodeling deacetylase complex) and frequent amplification of chromosome segments containing the genes PIK3CA, TERT, and MYC. Stable transgenic expression of H2A and H2B in a uterine serous carcinoma cell line demonstrated that mutant, but not wild-type, histones increased expression of markers of epithelial–mesenchymal transition (EMT) as well as tumor migratory and invasive properties, suggesting a role in sarcomatous transformation. Comparison of the phylogenetic relationships of carcinomatous and sarcomatous elements of the same tumors demonstrated separate lineages leading to these two components. These findings define the genetic landscape of CSs and suggest therapeutic targets for these highly aggressive neoplasms.


2013 ◽  
Vol 24 ◽  
pp. ix93
Author(s):  
K. Ouchi ◽  
S. Takahashi ◽  
K. Tatsuno ◽  
A. Hayashi ◽  
S. Yamamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document