scholarly journals Forkhead Box Protein C2 (FOXC2) Promotes the Resistance of Human Ovarian Cancer Cells to Cisplatin In Vitro and In Vivo

2016 ◽  
Vol 39 (1) ◽  
pp. 242-252 ◽  
Author(s):  
Chanjuan Li ◽  
Hongjuan Ding ◽  
Jing Tian ◽  
Lili Wu ◽  
Yun Wang ◽  
...  

Background/Aims: FOXC2 has been reported to play a role in tumor progression, but the correlations of FOXC2 with the cisplatin (CDDP) resistance of ovarian cancer cells are still unclear. The purpose of the present study is to investigate the roles of FOXC2 in the CDDP resistance of ovarian cancer cells and its possible mechanisms. Methods: Quantitative real-time PCR (qRT-PCR) was performed to detect the expression of FOXC2 mRNA in CDDP-resistant or sensitive ovarian cancer tissues and cell lines (SKOV3/CDDP and SKOV3). Gain- and loss-of-function assays were performed to analyze the effects of FOXC2 knockdown or overexpression on the in vitro and in vivo sensitivity of ovarian cancer cells to CDDP and its possible molecular mechanisms. Results: The relative expression level of FOXC2 mRNA in CDDP-resistant ovarian cancer tissues was higher than that in CDDP-sensitive tissues. Also, the expression of FOXC2 mRNA and protein in CDDP-resistant ovarian cancer cell line (SKOV3/CDDP) cell line was higher than that in its parental cell line (SOKV3). Small hairpin RNA (shRNA)-mediated FOXC2 knockdown significantly increased the in vitro and in vive sensitivity of SKOV3/CDDP cells to CDDP by enhancing apoptosis, while upregulation of FOXC2 significantly decreased the in vitro and in vivo sensitivity of SKOV3 cells to CDDP by reducing apoptosis. Furthermore, FOXC2 activates the Akt and MAPK signaling pathways, and then induced the decreased expression of Bcl-2 protein and the increased expression of Bax and cleaved caspase-3 proteins. Conclusions: FOXC2 mediates the CDDP resistance of ovarian cancer cells by activation of the Akt and MAPK signaling pathways, and may be a potential novel therapeutic target for overcoming CDDP resistance in human ovarian cancer.

Author(s):  
Huan Yan ◽  
Hong Li ◽  
Pengyun Li ◽  
Xia Li ◽  
Jianjian Lin ◽  
...  

Abstract Background Long noncoding RNAs (LncRNAs) have been reported to be abnormally expressed in human ovarian cancer and associated with the proliferation and metastasis of cancer cells. The objective of this study was to investigate the role and the underlying mechanisms of LncRNA MAP3K20 antisense RNA 1 (MLK7-AS1) in ovarian cancer. Methods The expression level of MLK7-AS1 was investigated in human ovarian cancer tissues and cell lines. The effects of MLK7-AS1 knockdown on ovarian cancer cell proliferation, migration, invasion and apoptosis were evaluated in vitro using MTT, colony formation assays, wound healing assays, transwell assays and flow cytometry. Furthermore, the in vivo effects were determined using the immunodeficient NSG female mice. Luciferase reporter assays were employed to identify interactions among MLK7-AS1 and its target genes. Results In the current study, MLK7-AS1 was specifically upregulated in ovarian cancer tissues and cell lines. Knockdown of MLK7-AS1 inhibited the ability of cell migration, invasion, proliferation, colony formation and wound healing, whereas promoted cell apoptosis in vitro. By using online tools and mechanistic analysis, we demonstrated that MLK7-AS1 could directly bind to miR-375 and downregulate its expression. Besides, MLK7-AS1 reversed the inhibitory effect of miR-375 on the growth of ovarian cancer cells, which might be involved in the upregulation of Yes-associated protein 1 (YAP1) expression. Moreover, knockdown MLK7-AS1 expression inhibited primary tumor growth in ovary and metastatic tumors in multiple peritoneal organs including liver and spleen in vivo, which were partly abolished by miR-375 inhibition. Mechanically, we found that MLK7-AS1 modulated the epithelial-mesenchymal transition (EMT) process by interacting with miR-375/YAP1 both in vivo and vitro, which promoted the expression of Slug. Conclusions Taken together, our study showed for the first time that MLK7-AS1 interacted with miR-375 to promote proliferation, metastasis, and EMT process in ovarian cancer cells through upregulating YAP1.


2013 ◽  
Vol 29 (4) ◽  
pp. 1371-1378 ◽  
Author(s):  
BEI ZHANG ◽  
XUEYA WANG ◽  
FENGFENG CAI ◽  
WEIJIE CHEN ◽  
ULI LOESCH ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
pp. 141-155
Author(s):  
Enrique Ortega ◽  
Francisco J. Ballester ◽  
Alba Hernández-García ◽  
Samanta Hernández-García ◽  
M. Alejandra Guerrero-Rubio ◽  
...  

Novel Os(ii) arene complexes with a deprotonated ppy or ppy-CHO C^N ligand have been synthesized to selectively act on cancer cells as proteosynthesis inhibitors in vitro and exert antitumor activity in vivo in C. elegans models.


2020 ◽  
Author(s):  
hanwei cui ◽  
Qian Yi ◽  
Min Tian ◽  
Yuteng Liang ◽  
Jie Huang ◽  
...  

Abstract BackgroundAdenosine (A)-to-inosine (I) RNA editing is the most prevalent RNA editing mechanism, in which adenosine deaminases acting on RNA 1 (ADAR1) is a major adenosine deaminase. Increasing evidence suggests that editing dysregulation of ADAR1 plays an important role in human tumorigenesis, while the underlying mechanism remains elusive. MethodsThe clinical relevance of ADAR1 was analyzed by real-time PCR, western blotting and immunohistochemistry of ovarian cancer tissues. ADAR1 function on ovarian cancer cells in vitro were explored by colony formation assay, transwell assay and Brdu-based cell cycle assay in vitro and xenograft models in vivo. Western blotting, immunostaining and DNA/RNA immunoprecipitation-qPCR were conducted to confirm DNA damage and R-loop accumulation in ovarian cancer cells. Co-immunoprecipitation and DNA/RNA immunoprecipitation were performed to detect interaction of DHX9, ADAR1 and R-loop complex in ovarian cancer cells.ResultsWe demonstrated that ADAR1 was highly expressed in ovarian cancer tissues and negatively correlated with progression free survival of ovarian cancer patients. Importantly, silence of ADAR1 repressed ovarian cancer cell growth and colony formation in vitro and inhibited ovarian cancer cell tumorigenesis in vivo. Further cell cycle and transcriptome profile analysis revealed that silence of ADAR1 in ovarian cancer cells induced cell cycle arrest at G1/G0 stage. Mechanically, loss of ADAR1 caused R-loop abnormal accumulation, thereby contributing to single stand DNA break and ATR pathway activation. Additionally, ADAR1 interacted with DHX9 to regulate R-loop complex formation, and A-to-I editing of nascent RNA repressed R-loop formation during co-transcriptional process. ConclusionsOur results identify a novel ADAR1/R-loop/ATR axis critical for ovarian cancer progression and a potential target for ovarian cancer therapy.


2019 ◽  
Vol 30 (6) ◽  
pp. 571-578 ◽  
Author(s):  
Ya Liu ◽  
Hongying Zhou ◽  
Tao Yi ◽  
Hongjing Wang

2001 ◽  
Vol 11 (1) ◽  
pp. 18-23 ◽  
Author(s):  
R.-Y. Zang ◽  
D.-R. Shi ◽  
H.-J. Lu ◽  
S.-M. Cai ◽  
D.-R. Lu ◽  
...  

2019 ◽  
Vol 15 (6) ◽  
pp. 1288
Author(s):  
SalmaAbdi Mahmoud ◽  
MohammedIbrahim Mohammed ◽  
MuhiddinAbdi Mahmoud ◽  
Adam Munkaila ◽  
IddrisuBaba Yabasin

2017 ◽  
Vol 8 (11) ◽  
pp. 4100-4107 ◽  
Author(s):  
Farrukh Aqil ◽  
Jeyaprakash Jeyabalan ◽  
Ashish K. Agrawal ◽  
Al-Hassan Kyakulaga ◽  
Radha Munagala ◽  
...  

The exosomal formulation of berry Anthos elicits potent therapeutic activity against both the drug-sensitive and drug-resistant human ovarian cancer cells in vitro and in vivo.


2021 ◽  
Vol 7 (9) ◽  
pp. eabb0737
Author(s):  
Zhengnan Yang ◽  
Wei Wang ◽  
Linjie Zhao ◽  
Xin Wang ◽  
Ryan C. Gimple ◽  
...  

Ovarian cancer represents a highly lethal disease that poses a substantial burden for females, with four main molecular subtypes carrying distinct clinical outcomes. Here, we demonstrated that plasma cells, a subset of antibody-producing B cells, were enriched in the mesenchymal subtype of high-grade serous ovarian cancers (HGSCs). Plasma cell abundance correlated with the density of mesenchymal cells in clinical specimens of HGSCs. Coculture of nonmesenchymal ovarian cancer cells and plasma cells induced a mesenchymal phenotype of tumor cells in vitro and in vivo. Phenotypic switch was mediated by the transfer of plasma cell–derived exosomes containing miR-330-3p into nonmesenchymal ovarian cancer cells. Exosome-derived miR-330-3p increased expression of junctional adhesion molecule B in a noncanonical fashion. Depletion of plasma cells by bortezomib reversed the mesenchymal characteristics of ovarian cancer and inhibited in vivo tumor growth. Collectively, our work suggests targeting plasma cells may be a novel approach for ovarian cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document