Effect of the Serum Inhibited Gene (Si1) on Autophagy and Apoptosis in MCF-7 Breast Cancer Cells
Background/Aims: The serum inhibited gene (Si1) was named according to its inhibited expression in response to serum exposure. Si1 has an important relationship with tumors. Autophagy and apoptosis are two types of cell death. However, there are few studies regarding the association between Si1 and autophagy, or apoptosis in tumors. In this, we investigated the effect of Si1 on the proliferation and cell cycle progression of MCF-7 cells and its influence on autophagy and apoptosis in MCF-7 cells. Methods: To investigate these functions of Si1 in tumor cells, we firstly constructed a pEGFP-Si1 overexpression vector and a pSilencer-Si1 interference vector, and we subsequently tested the proliferation and cell cycle progression of MCF-7 cells using the MTT assay and flow cytometry, and we then detected autophagy by western blotting and MDC (Monodansylcadaverine) staining as well as apoptosis by western blotting and Hoechst 33258 staining. Results: We found that the Si1 gene can significantly inhibit the viability of MCF-7 cells and arrest the cell cycle at the G2/M phase. Si1 can induce autophagy through upregulation of LC3-II and Beclin1, it can induce apoptosis through cleavage of PARP in MCF-7 cells. Conclusion: Altogether, our study indicated that Si1 can inhibit cell proliferation of MCF-7, and also induces autophagy and apoptosis. This study firstly investigated the effect of Si1 on autophagy and apoptosis in MCF-7 cells. Moreover, it also improves the current understanding of the mechanisms related to the effect of Si1 on tumor cells and also provides a foundation for gene-targeted therapy.