scholarly journals Emodin Inhibits ATP-Induced Proliferation and Migration by Suppressing P2Y Receptors in Human Lung Adenocarcinoma Cells

2017 ◽  
Vol 44 (4) ◽  
pp. 1337-1351 ◽  
Author(s):  
Xia Wang ◽  
Long Li ◽  
Ruijuan Guan ◽  
Danian Zhu ◽  
Nana Song ◽  
...  

Background/Aims: Extracellular ATP performs multiple important functions via activation of P2 receptors on the cell surface. P2Y receptors play critical roles in ATP evoked response in human lung adenocarcinoma cells (A549 cells). Emodin is an anthraquinone derivative originally isolated from Chinese rhubarb, possesses anticancer properties. In this study we examined the inhibiting effects of emodin on proliferation, migration and epithelial-mesenchymal transition (EMT) by suppressing P2Y receptors-dependent Ca2+ increase and nuclear factor-κB (NF-KB) signaling in A549 cells. Methods: A549 cells were pretreated with emodin before stimulation with ATP for the indicated time. Then, intracellular Ca2+ concentration ([Ca2+]i) was measured by Fluo-8/AM staining. Cell proliferation and cell cycle progression were tested by CCK8 assay and flow cytometry In addition, wound healing and western blot were performed to determine cell migration and related protein levels (Bcl-2, Bax, claudin-1, NF-κB). Results: Emodin blunted ATP/UTP-induced increase of [Ca2+]i and cell proliferation concentration-dependently Meanwhile, it decreased ATP-induced cells accumulation in the S phase. Furthermore, emodin altered protein abundance of Bcl-2, Bax and claudin-1 and attenuated EMT caused by ATP. Such ATP-induced cellular reactions were also inhibited by a nonselective P2Y receptors antagonist, suramin, in a similar way to emodin. Besides, emodin could inhibit activation of NF-κB, thus suppressed ATP-induced proliferation, migration and EMT. Conclusion: Our results demonstrated that emodin inhibits ATP-induced proliferation, migration, EMT by suppressing P2Y receptors-mediated [Ca2+]i increase and NF-κB signaling in A549 cells.

2016 ◽  
Vol 49 (3) ◽  
pp. 1028-1038 ◽  
Author(s):  
Ning Zhong ◽  
Shunbin Shi ◽  
Hongzhen Wang ◽  
Guangzhou Wu ◽  
Yunliang Wang ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fei Wang ◽  
Da-zhong Liu ◽  
Hao Xu ◽  
Yi Li ◽  
Wei Wang ◽  
...  

The objective of this study was performed to investigate the effects of thapsigargin on apoptosis, actin cytoskeletal dynamics, and actin cytoskeletal proteins in human lung adenocarcinoma cell. Thapsigargin is a specific irreversible inhibitor of ER calcium-ATPase, which may promote ER stress by depletion of lumenal calcium stores and show potential to induce cell death. The effects of thapsigargin on the apoptosis in A549 cells were assayed by Hoechst staining. Moreover, the F-actin staining by Rhodamine-phalloidin and RhoA antibody for cytoskeleton organizations were applied to A549 cells. To confirm the impairment of cytoskeletal dynamics treated with thapsigargin, western blots were applied to analyze the protein levels of p-Cofilin-1 (Ser3), Cofilin-1, and pPaxillin (Tyr118), as well as RhoA and pS6 (S240/244). Results suggest that thapsigargin may induce cell death in A549 cells with a time- and dose-dependent manner. The F-actin fibers and RhoA signals are also reduced with a time- and dose-dependent manner by thapsigargin treatment. The phosphorylation forms of Cofilin-1 and paxillin are attenuated by 1 μM thapsigargin treatment for 24 h. These alternations may be caused by the inhibition of of mTORC1 activities (indicated by pS6 (Ser240/244)) and RhoA pathways after thapsigargin treatment. The present findings highlight important roles of calcium entry in cytoskeleton organization and apoptosis in human lung adenocarcinoma cells and will help to set a stage to the clinical treatment of cancer cell metastasis.


Sign in / Sign up

Export Citation Format

Share Document