scholarly journals Software defined network emulation with OpenFlow protocol

Author(s):  
Tsehay Admassu Assegie

In software defined network the network infrastructure layer where the entire network devices, like switches and routers reside is connected with the separate controller layer with the help of standard called OpenFlow. The open flow standard enables different vendor devices like juniper, cisco and Huawei switch to connect to the controller or a software program. The software program controls and manages the network devices. Therefore, software defined network architecture makes the network flexible, cost effective and manageable, enables dynamic provisioning of bandwidth, dynamic scale out and dynamic scale in compared to the traditional network. In this study, the architectures and principles of software defined network is explored by emulating the software defined network employing a mininet.

Internet of Things (IoT) is a new platform that provides the communication among heterogeneous objects. The aim of theIoT is to allow anything can communicate with anywhere at any time to share the information. Generally, devices in IoT are equipped with limited power. The power failure of single node changes the entire network architecture in the IoT framework. To attain an efficient routing, there is a need to design energy-efficient routing algorithm for IoT heterogeneous objects. The proposed Software Defined Network based Energy-Efficient Routing Protocol (SD-EERP) takes care to reduce energy consumption and transmission overhead of monitoring every device in the IoT paradigm. The aim of the proposed SD-EERP algorithm is to enhance the lifetime of the devices by choosing the energy-efficient path to reach the target device. The proposed model implements the Software Defined Network (SDN) based cluster architecture. The cluster head selection is based on residual energy and speed.All the cluster heads connect to the SDN controller to manage the entire network architecture.The simulation results show the proposed algorithm can minimize the energy consumption and increase the packet delivery ratio when compared with SCBRP


2018 ◽  
Vol 8 (2) ◽  
pp. 2724-2730 ◽  
Author(s):  
M. H. H. Khairi ◽  
S. H. S. Ariffin ◽  
N. M. Abdul Latiff ◽  
A. S. Abdullah ◽  
M. K. Hassan

Software defined network (SDN) is a network architecture in which the network traffic may be operated and managed dynamically according to user requirements and demands. Issue of security is one of the big challenges of SDN because different attacks may affect performance and these attacks can be classified into different types. One of the famous attacks is distributed denial of service (DDoS). SDN is a new networking approach that is introduced with the goal to simplify the network management by separating the data and control planes. However, the separation leads to the emergence of new types of distributed denial-of-service (DDOS) attacks on SDN networks. The centralized role of the controller in SDN makes it a perfect target for the attackers. Such attacks can easily bring down the entire network by bringing down the controller. This research explains DDoS attacks and the anomaly detection as one of the famous detection techniques for intelligent networks.


Author(s):  
Habib Mostafaei ◽  
Davinder Kumar ◽  
Gabriele Lospoto ◽  
Marco Chiesa ◽  
Giueseppe Di Battista

2021 ◽  
Vol 4 (1) ◽  
pp. 3
Author(s):  
Parag Narkhede ◽  
Rahee Walambe ◽  
Shruti Mandaokar ◽  
Pulkit Chandel ◽  
Ketan Kotecha ◽  
...  

With the rapid industrialization and technological advancements, innovative engineering technologies which are cost effective, faster and easier to implement are essential. One such area of concern is the rising number of accidents happening due to gas leaks at coal mines, chemical industries, home appliances etc. In this paper we propose a novel approach to detect and identify the gaseous emissions using the multimodal AI fusion techniques. Most of the gases and their fumes are colorless, odorless, and tasteless, thereby challenging our normal human senses. Sensing based on a single sensor may not be accurate, and sensor fusion is essential for robust and reliable detection in several real-world applications. We manually collected 6400 gas samples (1600 samples per class for four classes) using two specific sensors: the 7-semiconductor gas sensors array, and a thermal camera. The early fusion method of multimodal AI, is applied The network architecture consists of a feature extraction module for individual modality, which is then fused using a merged layer followed by a dense layer, which provides a single output for identifying the gas. We obtained the testing accuracy of 96% (for fused model) as opposed to individual model accuracies of 82% (based on Gas Sensor data using LSTM) and 93% (based on thermal images data using CNN model). Results demonstrate that the fusion of multiple sensors and modalities outperforms the outcome of a single sensor.


2021 ◽  
Author(s):  
Keerthivasan K ◽  
Shibu S

Faster data speeds, shorter end-to-end latencies, improved end-user service efficiency, and a wider range of multi-media applications are expected with the new 5G wireless services. The dramatic increase in the number of base stations required to meet these criteria, which undermines the low-cost constraints imposed by operators, demonstrates the need for a paradigm shift in modern network architecture. Alternative formats will be required for next-generation architectures, where simplicity is the primary goal. The number of connections is expected to increase rapidly, breaking the inherent complexity of traditional coherent solutions and lowering the resulting cost percentage. A novel implementation model is used to migrate complex-nature modulation structures in a highly efficient and cost-effective manner. Theoretical work to analyses modulations’ behavior over a wired/fiber setup and wireless mode is also provided. The state-of-the-art computational complexity, simplicity, and ease of execution while maintaining efficiency throughput and bit error rate.


Sign in / Sign up

Export Citation Format

Share Document