scholarly journals Discrete wavelet transform-based RI adaptive algorithm for system identification

Author(s):  
Mohammad Shukri Salman ◽  
Alaa Eleyan ◽  
Bahaa Al-Sheikh

In this paper, we propose a new adaptive filtering algorithm for system identification. The algorithm is based on the recursive inverse (RI) adaptive algorithm which suffers from low convergence rates in some applications; i.e., the eigenvalue spread of the autocorrelation matrix is relatively high. The proposed algorithm applies discrete-wavelet transform (DWT) to the input signal which, in turn, helps to overcome the low convergence rate of the RI algorithm with relatively small step-size(s). Different scenarios has been investigated in different noise environments in system identification setting. Experiments demonstrate the advantages of the proposed DWT recursive inverse (DWT-RI) filter in terms of convergence rate and mean-square-error (MSE) compared to the RI, discrete cosine transform LMS (DCTLMS), discrete-wavelet transform LMS (DWT-LMS) and recursive-least-squares (RLS) algorithms under same conditions.

2020 ◽  
Vol 28 (5) ◽  
pp. 507-520
Author(s):  
Bahaa Al-Sheikh ◽  
Mohammad Shukri Salman ◽  
Alaa Eleyan ◽  
Shadi Alboon

BACKGROUND: Fetal heart activity adds significant information about the status of the fetus health. Early diagnosis of issues in the heart before delivery allows early intervention and significantly improves the treatment. OBJECTIVE: This paper presents a new adaptive filtering algorithm for fetal electrocardiogram (FECG) extraction from the maternal abdominal signal, known in literature as abdominal electrocardiogram (AECG) signal. Fetal QRS complex waves will be identified and extracted accurately for fetal health care and monitoring purposes. METHODS: We use discrete wavelet transform recursive inverse (DWT-RI) adaptive filtering algorithm for this objective. Thoracic maternal electrocardiogram (MECG) is used as a reference in the proposed algorithm and FECG components are extracted from AECG signal after suppressing the MECG projections. The proposed algorithm is compared to other typical adaptive filtering algorithms, least mean squares (LMS), recursive least squares (RLS), and recursive inverse (RI). RESULTS: Fetal QRS waveforms successful identification and extraction from AECG signal is evaluated objectively and visually and compared to other algorithms. We validated the proposed algorithm using both synthetic data and real clinical data. CONCLUSIONS: The proposed algorithm is capable of extracting fetal QRS waveforms successfully from AECG and outperforms other adaptive filtering algorithms in terms of accuracy and positive predictivity.


Informatica ◽  
2013 ◽  
Vol 24 (4) ◽  
pp. 657-675
Author(s):  
Jonas Valantinas ◽  
Deividas Kančelkis ◽  
Rokas Valantinas ◽  
Gintarė Viščiūtė

2020 ◽  
Vol 64 (3) ◽  
pp. 30401-1-30401-14 ◽  
Author(s):  
Chih-Hsien Hsia ◽  
Ting-Yu Lin ◽  
Jen-Shiun Chiang

Abstract In recent years, the preservation of handwritten historical documents and scripts archived by digitized images has been gradually emphasized. However, the selection of different thicknesses of the paper for printing or writing is likely to make the content of the back page seep into the front page. In order to solve this, a cost-efficient document image system is proposed. In this system, the authors use Adaptive Directional Lifting-Based Discrete Wavelet Transform to transform image data from spatial domain to frequency domain and perform on high and low frequencies, respectively. For low frequencies, the authors use local threshold to remove most background information. For high frequencies, they use modified Least Mean Square training algorithm to produce a unique weighted mask and perform convolution on original frequency, respectively. Afterward, Inverse Adaptive Directional Lifting-Based Discrete Wavelet Transform is performed to reconstruct the four subband images to a resulting image with original size. Finally, a global binarization method, Otsu’s method, is applied to transform a gray scale image to a binary image as the output result. The results show that the difference in operation time of this work between a personal computer (PC) and Raspberry Pi is little. Therefore, the proposed cost-efficient document image system which performed on Raspberry Pi embedded platform has the same performance and obtains the same results as those performed on a PC.


Sign in / Sign up

Export Citation Format

Share Document