scholarly journals Efficient organization of nodes in wireless sensor networks (clustering location-based LEACH)

Author(s):  
Mohammed Réda El Ouadi ◽  
Abderrahim Hasbi

The rapid development of connected devices and wireless communication has enabled several researchers to study wireless sensor networks and propose methods and algorithms to improve their performance. Wireless sensor networks (WSN) are composed of several sensor nodes deployed to collect and transfer data to base station (BS). Sensor node is considered as the main element in this field, characterized by minimal capacities of storage, energy, and computing. In consequence of the important impact of the energy on network lifetime, several researches are interested to propose different mechanisms to minimize energy consumption. In this work, we propose a new enhancement of low-energy adaptive clustering hierarchy (LEACH) protocol, named clustering location-based LEACH (CLOC-LEACH), which represents a continuity of our previous published work location-based LEACH (LOC-LEACH). The proposed protocol organizes sensor nodes into four regions, using clustering mechanism. In addition, an efficient concept is adopted to choose cluster head. CLOC-LEACH considers the energy as the principal metric to choose cluster heads and uses a gateway node to ensure the inter-cluster communication. The simulation with MATLAB shows that our contribution offers better performance than LEACH and LOC-LEACH, in terms of stability, energy consumption and network lifetime.

Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1835 ◽  
Author(s):  
Ruan ◽  
Huang

Since wireless sensor networks (WSNs) are powered by energy-constrained batteries, many energy-efficient routing protocols have been proposed to extend the network lifetime. However, most of the protocols do not well balance the energy consumption of the WSNs. The hotspot problem caused by unbalanced energy consumption in the WSNs reduces the network lifetime. To solve the problem, this paper proposes a PSO (Particle Swarm Optimization)-based uneven dynamic clustering multi-hop routing protocol (PUDCRP). In the PUDCRP protocol, the distribution of the clusters will change dynamically when some nodes fail. The PSO algorithm is used to determine the area where the candidate CH (cluster head) nodes are located. The adaptive clustering method based on node distribution makes the cluster distribution more reasonable, which balances the energy consumption of the network more effectively. In order to improve the energy efficiency of multi-hop transmission between the BS (Base Station) and CH nodes, we also propose a connecting line aided route construction method to determine the most appropriate next hop. Compared with UCCGRA, multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS and PSO-SD, PUDCRP prolongs the network lifetime by between 7.36% and 74.21%. The protocol significantly balances the energy consumption of the network and has better scalability for various sizes of network.


2020 ◽  
Vol 10 (21) ◽  
pp. 7886
Author(s):  
Atefeh Rahiminasab ◽  
Peyman Tirandazi ◽  
M. J. Ebadi ◽  
Ali Ahmadian ◽  
Mehdi Salimi

Wireless sensor networks (WSNs) include several sensor nodes that have limited capabilities. The most critical restriction in WSNs is energy resources. Moreover, since each sensor node’s energy resources cannot be recharged or replaced, it is inevitable to propose various methods for managing the energy resources. Furthermore, this procedure increases the network lifetime. In wireless sensor networks, the cluster head has a significant impact on system global scalability, energy efficiency, and lifetime. Furthermore, the cluster head is most important in combining, aggregating, and transferring data that are received from other cluster nodes. One of the substantial challenges in a cluster-based network is to choose a suitable cluster head. In this paper, to select an appropriate cluster head, we first model this problem by using multi-factor decision-making according to the four factors, including energy, mobility, distance to centre, and the length of data queues. Then, we use the Cluster Splitting Process (CSP) algorithm and the Analytical Hierarchy Process (AHP) method in order to provide a new method to solve this problem. These four factors are examined in our proposed approach, and our method is compared with the Base station Controlled Dynamic Clustering Protocol (BCDCP) algorithm. The simulation results show the proposed method in improving the network lifetime has better performance than the base station controlled dynamic clustering protocol algorithm. In our proposed method, the energy reduction is almost 5% more than the BCDCP method, and the packet loss rate in our proposed method is almost 25% lower than in the BCDCP method.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 403 ◽  
Author(s):  
Goran Popovic ◽  
Goran Djukanovic ◽  
Dimitris Kanellopoulos

Clustering achieves energy efficiency and scalable performance in wireless sensor networks (WSNs). A cluster is formed of several sensor nodes, one of them selected as the cluster head (CH). A CH collects information from the cluster members and sends aggregated data to the base station or another CH. In such a hierarchical WSN, some nodes are possibly moveable or nomadic (relocated periodically), while others are static. The mobility of sensor nodes can improve network performance and prolong network lifetime. This paper presents the idea of mobile, solar-powered CHs that relocate themselves inside clusters in such a way that the total energy consumption in the network is reduced and the network lifetime is extended. The positioning of CHs is made in each round based on a selfish herd hypothesis, where the leader retreats to the center of gravity. Based on this idea, the CH-active algorithm is proposed in this study. Simulation results show that this algorithm has benefits in terms of network lifetime and in the prolongation of the duration of network stability period.


Author(s):  
Mohammad Sedighimanesh ◽  
Hesam Zandhesami ◽  
Ali Sedighimanesh

Background: Wireless sensor networks are considered as one of the 21st century's most important technologies. Sensors in wireless sensor networks usually have limited and sometimes non-rechargeable batteries, which they are supposed to be preserved for months or even years. That's why the energy consumption in these networks is of a great importance. Objective: One way to improve energy consumption in a wireless sensor network is to use clustering. In clustered networks, one node is known as the cluster head and other nodes as normal members, which normal nodes send the collected data to the cluster head, and the cluster head sends the information to the base station either by a single step or by multiple steps. Method: Using clustering simplifies resource management and increases scalability, reliability, and the network lifetime. Although the cluster formation involves a time- overhead and how to choose the cluster head is another problem, but its advantages are more than its disadvantages. : The primary aim of this study is to offer a solution to reduce energy consumption in the sensor network. In this study, during the selection of cluster heads, Honeybee Algorithm is used and also for routing, Harmonic Search Algorithm is used. In this paper, the simulation is performed by using MATLAB software and the proposed method is compared with the Low Energy Adaptive Clustering Hierarchy (LEACH) and the multi-objective fuzzy clustering algorithm (MOFCA). Result and Conclusion: By simulations of this study, we conclude that this research has remarkably increased the network lifetime with respect to EECS, LEACH, and MOFCA algorithms. In view of the energy constraints of the wireless sensor network and the non-rechargeable batteries in most cases, providing such solutions and using metaheuristic algorithms can result in a significant reduction in energy consumption and, consequently, increase in the network lifetime.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jin Yong ◽  
Zhou Lin ◽  
Wei Qian ◽  
Bai Ke ◽  
Wang Chen ◽  
...  

In wireless sensor networks (WSNs), due to the limited energy of sensor nodes, how to design efficient hierarchical routing algorithms to balance network resources and extend network life is an important problem to be solved. Aiming at the problems such as random selection of cluster head, redundancy of working node, and construction of cluster head transmission path, which affect network energy consumption, this paper proposes a multihop routing algorithm based on path tree (MHRA-PT) to optimize the network energy. Firstly, some nodes are those close to the base station and have large remaining energy which are selected to construct a cluster head set. Then, after clustering, each cluster is divided into different regions, and in each region, nodes with residual energy greater than the average residual energy of the cluster are selected as a working node. Finally, the cluster heads are sorted according to their distance from base station, and the next hop node is selected for each cluster head in turn until a path tree rooted at base station is formed completely, leading to data transmission from working node to base station. Simulation results show that the proposed algorithm can effectively reduce network energy consumption, balance network resources, and prolong network life cycle.


Author(s):  
Asgarali Bouyer ◽  
Abdolreza Hatamlou

Wireless Sensor Networks (WSNs) consist of many sensor nodes, which are used for capturing the essential data from the environment and sending it to the Base Station (BS). Most of the research has been focused on energy challenges in WSN. There are many notable studies on minimization of energy consumption during the process of sensing the important data from the environment where nodes are deployed. Clustering-based routing protocols are an energy-efficient protocols that improve the lifetime of a wireless sensor network. The objective of the clustering is to decrease the total transmission power by aggregating into a single path for prolonging the network lifetime. However, the problem of unbalanced energy consumption exists in some cluster nodes in the WSNs. In this paper, a hybrid algorithm is proposed for clustering and cluster head (CH) election. The proposed routing protocol hybridized Penalized Fuzzy C-Means (PFCM) and Self Organization Map (SOM) algorithms with LEACH protocol for the optimum numbers of the CHs and the location of them. Simulation results reveal that the proposed algorithm outperforms other existing protocols in terms of network life, number of dead sensor nodes, energy consumption of the network and convergence rate of the algorithm in comparison to the LEACH algorithm.


Author(s):  
K R Yadav ◽  
Vipin Pal ◽  
Girdhari Singh ◽  
R P Yadav

Clustering is an efficient approach to capitalize the energy of energy constraint sensor nodes in wireless sensor networks. Clustering schemes do not guarantee formation of clusters with equal number of nodes. So data frames transmitted by the nodes vary. TDMA schedule of nodes of smaller cluster is smaller than others that results more number of data frames and hence more energy consumption. The non uniform energy consumption of nodes affects the load balancing of network and these nodes are more prone to die earlier than others. In this paper, an improved scheme for cluster head selection is proposed. Clusters having variable frame slots for nodes are applied to E-LEACH and improved E-LEACH to make the cluster more load balanced. Simulation is carried out in NS-2 to analyze the performance of E-LEACH and improved E-LEACH with variable frame length. Variable frame slot scheme for clusters is also measured with the varying distance of base station from the field. Simulation results show that clustering with variable frame length has an improvement of 7% in node death rate over E-LEACH and an improvement of 9% in node death rate over improved ELEACH. Results suggest that variable frame length scheme improves the performance of clustering schemes for WSNs and have most significant result at base station located at 75m from the field.


2021 ◽  
Author(s):  
Anusha Chintam ◽  
Madhusudhana Rao T.v ◽  
Rajendra Kumar G

Abstract A wireless sensor network is a type of wireless ad-hoc networks, which is a collection of individual sensor nodes that are battery-operated devices and connected through ad-hoc and self-configuring connectivity. Therefore, the energy-saving of sensor node is a challenging design issue. Hence, the lifetime of a node is decreased. To enhance the network lifetime and optimal energy consumption, clustering is one of the best methods in WSN. While message transmission there is more distance between the cluster head and base station then more energy drained by the cluster head compare to the remaining sensor nodes in a particular cluster and if the energy consumption is more then automatically the network lifetime decreased. Therefore, this paper proposed an optimal metaheuristic firefly based cluster head selection protocol (FCH) by finding fitness value for selecting the best cluster head. This best-elected cluster head drains less energy as well as increase the network lifetime. In addition to the proposed FCH compared with two basic sensor networks algorithms low energy adaptive clustering hierarchy (LEACH) and Data transmission (DT). The FCH algorithm achieved better results than compared algorithms in terms of dead nodes, remaining energy, and alive nodes of the network.


Author(s):  
K. Neeraja

In this paper author describing the concept of throughput and limited energy consumption while routing data to base station and will use multiple routes to forward data to base station. Wireless sensor networks (WSNs)remains resource constrict. Energy is one of the most essential resources in such networks. Hence, optimal use of energy is significant. In existing scheme sensor nodes are movable, base station is fixed and energy consumption is more. To overcome this, we are using the E2R2 protocol in which both sensor nodes & base station are mobile. The proposed protocol is hierarchical along with cluster based. All clusters contain one cluster head (CH) node, dual deputy CH nodes, also a few of ordinary sensor nodes. The reclustering time along with energy requirement has been decreases by introducing the concept of CH panel. All things Considered the reliability aspect of this protocol, it brings leading effort to provide a detailed throughput level by the BS. Topology of mobile wireless sensor networks with more no of nodes which is formed as clusters and transmission of packets between the sensor nodes is done to the base station [BS].Which is routed using E2R2 PROTOCOL, parameters such as throughput, energy spent. The simulation displays a certain proposed design successfully decreases the energy consumption among the nodes, and thus significantly improves the throughput compared to the existing protocol.


Sign in / Sign up

Export Citation Format

Share Document