Integration of Frequency Dependent Soil Electrical Properties in Grounding Electrode Circuit Model

Author(s):  
Mehrdad Mokhtari ◽  
Zulkurnain Abdul-Malek ◽  
Chin Leong Wooi

<span>The effect of frequency dependent soil properties on the impedance and transient response of the grounding electrode was investigated. The frequency dependent soil models as proposed by Scott, Smith-Longmire, and Visacro-Alipio were critically reviewed. A novel method was proposed to integrate the frequency dependent soil electrical properties in the circuit model of grounding electrode. To validate the application of the method in circuit model, the voltage responses of the grounding electrode obtained by the circuit and electromagnetic models were compared. The voltage responses obtained by the circuit and electromagnetic models were in excellent agreement in terms of voltage peaks and wave shapes. The differences between voltage peaks obtained by the circuit and electromagnetic models were found less than 1%.</span>

Author(s):  
Mehrdad Mokhtari ◽  
Zulkurnain Abdul-Malek ◽  
Chin Leong Wooi

<span>The effect of frequency dependent soil properties on the impedance and transient response of the grounding electrode was investigated. The frequency dependent soil models as proposed by Scott, Smith-Longmire, and Visacro-Alipio were critically reviewed. A novel method was proposed to integrate the frequency dependent soil electrical properties in the circuit model of grounding electrode. To validate the application of the method in circuit model, the voltage responses of the grounding electrode obtained by the circuit and electromagnetic models were compared. The voltage responses obtained by the circuit and electromagnetic models were in excellent agreement in terms of voltage peaks and wave shapes. The differences between voltage peaks obtained by the circuit and electromagnetic models were found less than 1%.</span>


1977 ◽  
Vol 72 (1) ◽  
pp. 86-103 ◽  
Author(s):  
D Giulian ◽  
E G Diacumakos

The electrical properties of structures within an intact cell were examined by impalement with micropipette electrodes. Mean potential differences (PDs) measured from interphase HeLa cells showed that internal membrane-bounded compartments such as the nucleus, Golgi region, and the mitochondria were more negative than the cytoplasm with respect to an external grounding electrode. The nuclear PDs, unlike Golgi and cytoplasmic PDs, shifted during interphase and reached a peak value shortly before mitosis. The positioning of micropipettes was confirmed by electron microscope examination of marker solutions that were microinjected into specific intracellular regions. The combination of methods described here offers a new approach for the study of physiological events within intact, living cells.


Sign in / Sign up

Export Citation Format

Share Document