scholarly journals Closed-loop ring resonator topology for bandpass filter applications

Author(s):  
Norfishah Ab Wahab ◽  
M. N. Md Tan ◽  
M. N. Hushim

<p class="Pa41">This paper presents a single mode pseudo-elliptic bandpass resonator based on closed-loop ring topology. The resonator is built from six quarter wavelength transmission lines to form a square closed-loop ring structure. This structure creates transmission zeros at the lower and upper sidebands so that high selectivity bandpass filter response is achieved. The advantage of this topology is that the design is less complex since no perturbation is needed on the ring lines for creation of transmission zeros. Higher-order filters can be constructed by introducing quarter-wavelength coupled-lines, coupled at both input and output of the closed-loop ring resonator. For proof of concept, the filters are designed at 10 GHz up to 3<sup>rd</sup> order, simulated using full-wave electromagnetic simulator on microstrip substrate, <em>FR-4</em> with characteristics given as <em>Ԑr </em>= 4.70, <em>h </em>= 1.499 mm and <em>tan δ </em>= 0.012.  The filters are simulated and responses are found to be agreeable with the proposed idea.</p>

Author(s):  
Mohd Nasiruddin Hushim ◽  
Norfishah Ab Wahab ◽  
Muhammad Farid Abdul Khalid ◽  
Tn. Syarifah Atifah Tn. Mat Zin

This paper presents an implementation of quarter wavelength single-shorted coupled-lines for narrow bandpass filter application. It is shown as a new way of creating a single resonance bandpass filter by inter-connected of two <br /> single-shorted quarter wavelength coupled-line sections. By adding more single-shorted coupled-line into the configuration, the form of halfwavelength resonator can increase the degree of order of the filter. For the design of 4<sup>th</sup> order resonator, the coupledlines are arranged inter-connected to each other forming five-fingers lines layout. Due to the interconnection of the coupledlines, transmission zeros appear at the two stopbands which improves the selectivity of the filter response. Investigation on the parametric of the 4<sup>th</sup> order resonator is conducted to observe the controlling parameters and it’s realiability responses of the resonator. For compactness, five-fingers meandered lines is proposed. It is found that the size of the meandered lines resonator was successfully reduced by 33% compared to the five-fingers straight lines resonator of the same order. For validation of concept, the 4<sup>th</sup> order meandered lines resonator was designed at 1 GHz and fabricated on RO3210 microstrip substrate with characteristics given as h = 1.27 mm, Ɛr = 10.2 and tan δ = 3x10<sup>-3</sup>. The measurement results show good agreement with the simulation results.


2012 ◽  
Vol 571 ◽  
pp. 721-724
Author(s):  
Cai Peng

A miniature ultra-wideband (UWB) bandpass filter using three-quarters wavelength resonators is presented in this paper. Direct-connected feed method is employed between the input/output ports and the resonators in order to overcome the shortcomings due to the gap-coupled feed method and produce two transmission zeros in the lower and upper stopbands. On the other hand, two quarter-wavelength matching transmission lines are introduced to the input/output ports to improve the reflection loss characteristic in the passband of the filter. In addition, the resonators are folded to be open ring structures, which are more miniaturized than the conventional linear structure. As a consequence, the filter is compact in size and exhibits good performance. The filter is successfully realized in theory and verified by full wave EM simulation, and simulated frequency response results show that the fabricated filter has an insertion loss of better than 1dB in the passband and two rejections of greater than 25dB in most of the stopbands.


2016 ◽  
Vol 9 (5) ◽  
pp. 1029-1035 ◽  
Author(s):  
Jugul Kishor ◽  
Binod K. Kanaujia ◽  
Santanu Dwari ◽  
Ashwani Kumar

Synthesis of differential-mode bandpass filter (BPF) with good common-mode suppression has been described and demonstrated on the basis of ring dielectric resonator (RDR) for high-performance communication system. A RDR with two pairs of feeding lines has been used to excite TE01δ-mode. This unique combination of feeding lines and the ring resonator creates a differential passband. Meanwhile, TM01δ-mode of the DR can also be excited to achieve common-mode rejection in the stopband. Transmission zeros are created in the lower and upper stopband to further improve the selectivity of the proposed BPF. A second-order differential BPF is designed, fabricated and its performance is measured to validate the concept. There is good agreement between simulated and measured results.


Frequenz ◽  
2018 ◽  
Vol 72 (9-10) ◽  
pp. 455-458 ◽  
Author(s):  
Vivek Singh ◽  
Vinay Kumar Killamsetty ◽  
Biswajeet Mukherjee

Abstract In this letter, a miniaturized Band Pass Filter (BPF) with wide stopband centered at 0.350 GHz for TETRA band applications is proposed using a Spiral Short Circuit quarter wavelength Stepped Impedance Resonator (SSC-SIR) and a stub loaded on feed line for enhancement of rejection level in the stopband. Spiral configuration of the resonator is used for the miniaturization of BPF. The proposed BPF provides a 3dB fractional bandwidth of 13.7 % with two transmission zeros in the lower and upper stopband to provide good selectivity and four transmission zeros which provide wide stopband upto 6.86f0. Proposed BPF has a very compact size of 0.064λg×0.062λg.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1608
Author(s):  
Kai Men ◽  
Hang Liu ◽  
Kiat Seng Yeo

In this work, the design of a novel Ka-band miniaturized bandpass filter with broad bandwidth is demonstrated by using inversely coupled U-shaped transmission lines. In the proposed filter, two transmission zeros can be generated within a cascaded U-shaped structure and it can also be proven that, by inversely coupling two stacked U-shaped transmission lines, the notch frequency at the upper stopband can be shifted to a lower frequency, which results in a smaller chip size. The key parameters affecting the performance of the proposed filter are investigated in detail with the effective lumped-element circuit illustrated. Fabricated in a 0.13-μm SiGe BiCMOS process, the proposed filter achieves an insertion loss of 3.6 dB at a frequency of 28.75 GHz and the measured bandwidth is from 20.75 GHz to 41 GHz. The return loss is better than −10 dB from 20.5 GHz to 39 GHz. The lower transmission zero is located at 11.75 GHz with a suppression of 54 dB while the upper transmission zero is around 67 GHz with an attenuation of 34.6 dB. The measurement agrees very well with the simulation results and the overall chip size of the proposed filter is 176 × 269 μm2.


2011 ◽  
Vol 8 ◽  
pp. 19-24 ◽  
Author(s):  
Nopparat Thammawongsa ◽  
Ravee Phromloungsri ◽  
Krissanapong Somsuk ◽  
Pichai Arunvipas

2017 ◽  
Vol 49 (8) ◽  
Author(s):  
Ching-Chien Cheng ◽  
Kong-Xin Cheng ◽  
Huang-Kuang Kung ◽  
Chin-Yu Wang ◽  
Yng-Huey Jeng ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 83-90
Author(s):  
Salah I. Yahya ◽  
Abbas Rezaei ◽  
Yazen A. Khaleel

A novel configuration of a dual-band bandpass filter (BPF) working as a harmonic attenuator is introduced and fabricated. The proposed filter operates at 3 GHz, for UHF and SHF applications, and 6.3 GHz, for wireless applications. The presented layout has a symmetric structure, which consists of coupled resonators. The designing of the proposed resonator is performed by introducing a new LC equivalent model of coupled lines. To verify the LC model of the coupled lines, the lumped elements are calculated. The introduced filter has a wide stopband up to 85 GHz with 28th harmonic suppression, for the first channel, and 13th harmonic suppression, for the second channel. The harmonics are attenuated using a novel structure. Also, the proposed BPF has a compact size of 0.056 λg2. Having several transmission zeros (TZs) that improve the performance of the presented BPF is another feature. The proposed dual-band BPF is fabricated and measured to verify the design method, where the measurement results confirm the simulations.


Sign in / Sign up

Export Citation Format

Share Document