A Shunt Active Power Filter for 12 Pulse Converter Using Source Current Detection Approach

Author(s):  
Rajesh T ◽  
Nirmalkumar A

A shunt Active Power Filter (APF) with current detection at the source side is considered as a closed-loop system from the view of the whole power distribution system, which is expected with better harmonics filtering performance compared with conventional current detection methods such as load current detection and open loop control.  This paper introduces an efficient source current detection method (direct) control scheme to mitigate the grid current harmonics generated by the twelve pulse converter.  The proposed system uses Control Rectifier (12 –pulse converter) which efficiently regulates the DC voltage by varying the angle of each 6 pulse converter. Moreover, the proposed system uses three winding transformer which eliminates the harmonics during equal angles switching at each six pulse converter which in turn simplifies the operation of the SAPF. The proposed system is simulated in MATLAB SIMULINK to evaluate the performance of the proposed system.

Author(s):  
P. Thirumoorthi ◽  
Raheni T D

Power system harmonics are a menace to electric power system with disastrous consequence. Due to the presence of non linear load, power quality of the system gets affected.  To overcome this, shunt active power filter have been used near harmonic producing loads or at the point of common coupling to block current harmonics. The shunt active power filter is designed to minimize harmonics in source current and reactive power in the non linear power supplies which are creating harmonics. In this paper, Instantaneous power of p-q theory is employed to generate the reference currents and PI controller is used to control the dc link voltage. In addition to this, Artificial Intelligence (AI) technique is used to minimize the harmonics produced by nonlinear load. The main objective of this paper is to analyze and compare THD of the source current with PI controller and by artificial neural network based back propagation algorithm. The proposed system is designed with MATLAB/SIMULINK environment.


2013 ◽  
Vol 748 ◽  
pp. 646-650
Author(s):  
Qing Yang Liang ◽  
Zhe Sun ◽  
Chen Fei Zhang

The harmonic current detection technology is one of the key technologies of active power filter technologies. The development of the harmonic current detection technology directly determines the development of the active power filter technologies. Based on this, this paper introduces some basis concepts of wavelet transform and analyzes its time-frequency localization properties, then, describes the harmonic detection methods based on wavelet transform in terms of program building, algorithm selection and wavelet function selection. The results show that the harmonic current detection methods based on wavelet transform are able to compensate the inadequacy of Fourier transforms and can achieve the functions of detecting the steady-state and time-varying harmonic current of the grid in harmonic detection of active power filter.


Sign in / Sign up

Export Citation Format

Share Document